
EM/GIS REPORT NO. 03-01
PAGE 1 OF 9

Benchmarking of the ADCIRC Hydrodynamic Model on
Workstation Clusters

K.M. Dresback, R.L. Kolar, J.C. Dietrich, E.P. Gilje

Environmental Modeling/GIS Laboratory (EM/GIS)
School of Civil Engineering and Environmental Science

University of Oklahoma
Norman, OK 73019

Technical Report No. 03-01

(Keywords: shallow water modeling, GWC equation, finite elements)

Abstract

This report presents the results of a series of benchmarking tests conducted
using the parallel version of the ADCIRC hydrodynamic model. In particular, these
tests compared the performance of the original version of the ADCIRC model
against that of a similar version that includes a predictor-corrector (implicit) time-
stepping algorithm. As will be shown, the enhanced stability of this new algorithm
allows simulations to be completed in less wall-clock time, without a decrease in
scalability. We benchmarked these two versions of the model on two 16-processor
workstation clusters: one consisting of Sun UltraSparc IIe processors, and another
consisting of Intel Pentium III processors. Results indicate that the predictor-
corrector algorithm provides the same enhanced stability in parallel that it does in
serial, allowing for larger time steps and shorter wall-clock times. Results also
indicate that the two platforms show similar performance, though the Intel platform
is slightly better in some instances.

EM/GIS REPORT NO. 03-01
PAGE 2 OF 9

1. Background

Shallow water equations are used by researchers and
engineers to model the hydrodynamic behavior of
oceans, coastal areas, estuaties, lakes and impound-
ments (Kolar, et al., 1994). The finite element solu-
tions of these equations have been improved by two
equations: the wave continuity equation (WCE),
introduced by Lynch and Gray (1979) to suppress the
spurious oscillations inherent to the primitive equa-
tions without having to dampen the solution either
numerically or artificially; and the generalized wave
continuity equation (GWCE), introduced by
Kinnmark (1986) to achieve a balance between the
primitive and pure wave forms of the shallow water
equations by replacing the bottom friction with a
numerical parameter G. The finite element model
used in this report, ADCIRC (an ADvanced three-
dimensional CIRCulation model), was developed
from the GWCE (Luettich et al. 1992; Westerink et al.
1994).

The ADCIRC model encounters stability prob-
lems in highly non-linear applications unless a severe
Courant number (Cr) restriction is imposed. In deep
water applications, a practical upper bound of the
Courant number is 0.5 in order to mantain the stability
of the model; an even tighter constraint must be
imposed if the simulation includes barrier islands and
constricted inlets (e.g. Cr < 0.1). In order to relax this
restriction, an alternative time-marching algorithm
procedure was implemented that treats some or all of
the non-linear terms implicitly (Kolar, et al., 1998).
This predictor-corrector algorithm has been shown to
dramatically increase the maximum stable time step
in a number of one- and two-dimensional applications
(Dresback et al., 2001; Dresback et al., 2000). In this
study, we examined the behavior of this algorithm in
a parallel computing environment.

2. Methodology

The subject of this study was two-fold: (1) to compare
the original and predictor-corrector versions of the
ADCIRC (2DDI - depth integrated) model in a
parallel computing environment; and (2) to compare
the behavior of the ADCIRC model on two 16-
processor clusters. The differences between these
time-marching algorithms and computing clusters are
described in this section.

2.1 Time-Marching Algorithm: Original vs.
Predictor-Corrector

The background and effects of the predictor-corrector
time-stepping algorithm have been discussed previ-
ously by Dresback et al. (2001). In short, the algo-
rithm implicitly evaluates the non-linear terms in two
stages. The predictor stage is equivalent to the
existing semi-implicit algorithm, i.e., it evaluates the
non-linear terms using the values from the present.
Estimates of future values (called k*) obtained from
the predictor step are combined with the already
known present (k) and past (k-1) values to obtain the
corrected values for the future time level (k+1). The
corrector stage can be repeated as many times as
necessary, but it has been shown that only one itera-
tion is necessary to maximize stability (Dresback et
al., 2001). Results from one- and two-dimensional
simulations indicate that this new algorithm increases
the maximum stable time step by at least 100 percent,
the minimum required to overcome the additional
overhead. Gains sometimes show as much as a ten-
fold increase.

This study considers the implementation of this
algorithm in a parallel computing environment. Tests
were conducted on the two time-stepping algorithms
as programmed in version 41.03 of the ADCIRC
model: an original version, without any added
features; and an altered version that includes the
predictor-corrector algorithm. Both versions utilize
the two-dimensional depth-averaged capabilities of
the model. We then examined the effects of the new
time-marching algorithm by comparing the results of
the original parallel version of ADCIRC against those
of the predictor-corrector version.

The size of the time step was also varied in some
instances, as will be described in Section 3. In
general, we examined two time-step relationships:
one when the time step for the original and predictor-
corrector simulations was set at an equal (but arbi-
trary) value; and another when the time steps for the
original and predictor-corrector simulations were set
at their maximum stable values. The former relation-
ship allowed us to examine the additional computa-
tion time required by the corrector step in the new
algorithm. The latter relationship allowed us to
examine the increase in stability and efficiency
afforded by the new algorithm.

τ

EM/GIS REPORT NO. 03-01
PAGE 3 OF 9

2.2 Workstation Clusters: Sun UltraSparc IIe vs.
Intel Pentium III

This study also considered the implementation of the
ADCIRC model on two 16-processor computing clus-
ters: one consisting of Sun UltraSparc IIe processors;
and another consisting of Intel Pentium III processors.
The characteristics of these clusters are shown in
Table 1.

2.3 Compiler Flags

On the Sun platform, we did not encounter any signif-
icant problems while compiling the program on the
Sun platform. To optimize performance on our
system, we tested more than 40 combinations of
compiler flags before selecting a set of flags that
worked well. Tests were conducted on a small 10x10
quarter harbor domain, with a 50-second time step
and a 30-day duration. The following combination of
compiler flags offered the best performance:

-fast -xO4 -xdepend -fsimple=1 -f -dalign -
xtarget=ultra -xarch=v8plusa

The -fast flag is a macro that expands to a set of
options to optimize the code, and its components are
listed in the manual pages for f90. The -xO4 flag is
an optimization level in the -xO[n] family that
includes all of the optimization from the three lower
levels plus inlining of functions within the same file
and aggressive global optimization. The -xdepend

flag instructs the compiler to analyze data depen-
dency within loops and perform loop restructuring,
attempts cache blocking to reduce cache misses and
loads, and assists the compiler when loop unrolling
and applying other optimizations. The -fsimple=1
flag allows conservative simplifications of floating
point arithmetic assumptions. The -f flag aligns all
common blocks and all double- and quad-precision
local data on 8-byte boundaries. The -dalign flag gets
faster execution of double- and quad-precision
computations and prevents memory errors and
crashes. The -xtarget=ultra flag is a macro that
expands into flags for -xarch, -xchip, and -xcache
depending on the processor. The -xarch=v8plusa flag
reuires UltraSPARC and allows VIS 1.0 instructions.

Without these compiler flags, the test simulation
finished in slightly under five minutes, at 4:39. The
addition of these compiler flags decreased the run-
times to 1:26, a decline of almost 70 percent. Thus,
these optimization flags were used for all runs on the
Sun platform.

To determine which set of compiler flags
provided the optimal performance on the Intel plat-
form, we compared the -O1, -O2, -O3, -O4, -Ounsafe,
and -Oassumed flags. These tests were conducted on
a different ADCIRC run from that used on the Sun
platform. This Intel run, when compiled without any
optimization flags, ran in a wall-clock time of 2:26.
Tests on six combinations of the -O series of flags
consistently ran in wall-clock times ranging from
0:58 to 1:11, a decline of more than 50 percent. All of
the benchmarking on the Intel platform was done with
the -O flag, which is also the same as the -O2 flag.

2.4 Parameters of Benchmarking Studies

The tests in this study can be broken into four parts.
The first two parts consider an east coast domain and
an ideal quarter annular harbor domain, in which the
total numbers of global nodes were kept constant and
were evenly distributed amongst a variable number of
processors. The third part again considers the quarter
annular harbor domain, but this time the number of
nodes on each processor is kept at a constant value so
that the number of global nodes varies with the
number of processors. The fourth part also considers
the quarter annular harbor domain, but the total
number of nodes was varied over only one processor.
These tests will be further described in this subsec-
tion, and the results of these tests will be shown in

Table 1. Operating characteristics, software and cost of
the two 16-processor computing clusters.

Sun
UltraSparc IIe

Intel
Pentium III

Speed 500 MHz 1 GHz

Operating
System

Solaris 8 Linux

Cache 256 KB 256 KB

Memory 128 MB 256 MB

Communication 100 Mb/s 100 Mb/s

Compiler Sun Forte 6.0 NAG

MPI Sun
ClusterTools

MPIch

Total Cost $19,300 $27,500

EM/GIS REPORT NO. 03-01
PAGE 4 OF 9

Section 3.
The quarter annular harbor domain is a fictional

grid, used in this study because its geometry allows
for easy variations in grid resolution. It consists of a
harbor shaped like a quarter circle, with an inner
radius of 200,000 feet and an outer radius of 500,000
feet. The bathymetry varies quadratically, with a
minimum depth of 10 feet at the inner land boundary
and a maximum depth of 62.5 feet at the outer ocean
boundary. The two radial sides are also land bound-
aries. An example of this grid is shown in Figure 1.

The east coast domain is a representation of the
eastern coast of the United States, the western north
Atlantic Ocean and the Gulf of Mexico. The domain
is relatively coarse, with exactly 32,947 nodes. An
example of this grid is shown in Figure 2.

Part 1. Benchmarking studies were first
conducted on the east coast domain. Simulations
were run with a four-day duration, two-day ramp, and
a sec-1. In addition, the time steps
were varied according to two relations: one with the
time step at 50 seconds, for both the original and
predictor-corrector versions of the code; and one with
the time step at its maximum stable value, 60 seconds
for the original code and 515 seconds for the
predictor-corrector. The first relation examines the
effect of the additional computation time required for
the predictor-corrector, while the second relation

examines the effect of the additional stability afforded
by the predictor-corrector.

Part 2. Similar benchmarking studies were also
conducted on a quarter harbor domain consisting of
100,000 nodes. Simulations were run with a five-day
duration, half-day ramp, and a sec-
1. The time steps were again varied according to two
relations: one with the time step at 25 seconds, for
both the original and predictor-corrector versions of
the code; and one with the time step at its maximum
stable value, 30 seconds for the original code and 180
seconds for the predictor-corrector. The first relation
examines the effect of the additional computation
time required for the predictor-corrector, while the
second relation examines the effect of the additional
stability afforded by the predictor-corrector.

Part 3. The ideal quarter harbor domain was also
used to examine the timing behavior when the local
problem size was held approximately constant on
each processor. In these runs, each processor was
responsible for the same average number of nodes;
thus, the overall problem size increased as the number
of processors increased. In this way, the cost of
communication could be measured. The average
number of local nodes was chosen to be 5,000, in
order to keep the problem size non-trivial and the
simulation length reasonable. Simulations were run
with a five-day duration, half-day ramp, and a

 sec-1. The time step was held at a
constant value of 25 seconds.

Figure 1. Example of quarter harbor domain. This is a
relatively coarse example, with 121 nodes. The actual
resolution of the grids in this study varied, as described in
Section 2.

G τ0 0.005= =

Figure 2. The east coast domain, which includes the
eastern coast of the United States, the western north
Atlantic Ocean and the Gulf of Mexico.

G τ0 0.001= =

G τ0 0.001= =

EM/GIS REPORT NO. 03-01
PAGE 5 OF 9

Part 4. The fourth part of this study involved
varying the problem size on just one processor. This
is almost the exact opposite of what was done in the
third part. Whereas in Part 3 the focus was almost
exclusively on the cost of communication, here the
focus is on the computational ability of just one
processor. In particular, we looked for a relation
between job size and the sizes of the cache and
memory. The ideal quarter harbor domain was used
again, and the problem size was varied by varying the
number of nodes in the domain, from 50 to 560,000
nodes. Simulations were run with a five-day duration,
half-day ramp, and a sec-1. The
time step was held at a constant value of 25 seconds.

3. Results

To establish the single-processor baseline, the simula-
tions were conducted once in serial and fifteen times
in parallel, yielding timing information for tests
ranging from two to sixteen processors. On the Sun
platform, serial runs were timed with the UNIX
“time” command and parallel runs were timed with
the Sun ClusterTools “ptime” command. On the Intel
platform, the runs were timed with the LINUX “time”
command. These commands return three different
times: real, user, and system. The times presented in
this paper are the real, or wall-clock, times.

The figures in this section follow a consistent
color scheme: the original code is shown in blue,
while the predictor-corrector code is shown in red;
and the Sun simulations are shown with a smooth line,
while the Intel simulations are shown with a line of
diamonds. The details of each figure will be
discussed in this section.

3.1 East Coast Domain with Global Nodes Constant

Figure 3 shows the wall-clock timing information for
the east coast domain as a function of the number of
parallel processors. All results are shown with the
time step set at its maximum stable value, which is 50
seconds for the original code and 515 seconds for the
predictor-corrector code. The stability provided by
the predictor-corrector version allows this value to be
more than eight times greater than it is for the original
version. As a result, the predictor-corrector version
runs in a much shorter time. For example, an eight-
processor Sun simulation ran in 11 minutes with the

original code and only four minutes with the
predictor-corrector code, a decline of 63 percent.
However, there does not appear to be any significant
difference between the Sun and Intel platforms,
particularly for the predictor-corrector simulations.

Figure 4 shows the scaling information for the
east coast domain. Again, the time step is set at its
maximum stable value. The vertical axis, speed-up, is
a function of how much faster the parallel version
runs in comparison to a two-processor parallel
version. A four-processor parallel simulation should
theoretically run twice as fast as a similar two-
processor parallel simulation. This theoretical speed-
up line is shown in black on the figure.

The main difference is between the two plat-
forms, not the two versions of the code. The Intel
simulations show near theoretical speed-up through
eight processors, but then appear to tail off as the
number of processors is increased. On the other hand,
the Sun simulations consistently show lesser speed-
ups than the Intel simulations. Between the two
versions of the ADCIRC code, though, there does not
appear to be a significant difference. The original
version and the predictor-corrector version show
similar speed-up curves, depending on the platform.

3.2 Quarter Harbor Domain with Global Nodes
Constant

Figure 5 shows the wall-clock timing information for
the quarter harbor domain as a function of the number
of parallel processors. All results are shown with the
time step set at its maximum stable value, which is 30
seconds for the original code and 180 seconds for the

G τ0 0.001= =

0

20

40

60

80

0 2 4 6 8 10 12 14 16

Figure 3. Timing information for the east coast domain.
The original code is shown in blue, while the predictor-
corrector code is shown in red; the Sun simulations are
shown with a smooth line, while the Intel simulations are
shown with a line of diamonds

Number of Processors

Ti
m

e
(m

in
)

EM/GIS REPORT NO. 03-01
PAGE 6 OF 9

predictor-corrector code. This domain shows a
similar trend to that of the east coast domain. The
enhanced stability provided by the predictor-corrector
version allows the simulations to run in less wall-
clock time. For example, an eight-processor Sun
simulation ran in 64 minutes with the original code
and only 36 minutes with the predictor-corrector
code, a decline of 44 percent. This trend is the same
for both platforms, as the original version takes longer
on both the Sun and Intel systems.

Figure 6 shows the scaling information for the
quarter harbor domain. The time step is set at its
maximum stable value. The trend in this figure is also
similar to that of the east coast domain in Figure 4.
Both platforms provide near linear speed-up through
about eight processors, and then the results begin to
taper off. Also, the Intel platform provides slightly

better results. The two versions of the ADCIRC code
show no significant difference in speed-up, as their
curves are similar for similar platforms.

3.3 Quarter Harbor Domain with Local Nodes
Constant

Figure 7 shows the wall-clock timing information for
the quarter harbor domain as a function of the number
of parallel processors. In this set of runs, the local
problem size was held constant by varying the global
problem size with the number of processors. Theoret-
ically, these timing runs would show a horizontal line.
This graph shows significant differences between
both the versions of the code and the platforms on
which they are run. The differences between the
versions of the code can be explained by the constant
time step. Because the predictor-corrector requires
twice the computation per time step as the original
version, it is reasonable for the overall simulation to
also take twice as long. The differences between the
Sun and Intel platforms will be discussed in Section 4.
It is important to note that the Sun shows a significant
increase in wall-clock time from one to two proces-
sors, while the Intel platform shows no such increase.

3.4 Quarter Harbor Domain on One Processor

Figure 8 shows the work per unit time for both plat-
forms as a function of the number of processors.
Work per unit time was calculated in two steps: first,
we calculated the total memory used by all of the

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Sp
ee

d-
up

 v
s.

Tw
o

Pr
oc

es
so

rs

Number of Processors
Figure 4. Scaling information for the east coast domain.
The theoretical speed-up is shown with a smooth black
line. The original code is shown in blue, while the
predictor-corrector code is shown in red; the Sun
simulations are shown with a smooth line, while the Intel
simulations are shown with a line of diamonds.

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Figure 5. Timing information for the quarter harbor
domain. The original code is shown in blue, while the
predictor-corrector code is shown in red; the Sun
simulations are shown with a smooth line, while the Intel
simulations are shown with a line of diamonds.

Number of Processors

Ti
m

e
(h

r)

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Figure 6. Scaling information for the quarter harbor
domain. The theoretical speed-up is shown with a smooth
black line. The original code is shown in blue, with the
predictor-corrector code is shown in red; the Sun
simulations are shown with a smooth line, while the Intel
simulations are shown with a line of diamonds.

Number of Processors

Sp
ee

di
up

 v
s.

Tw
o

Pr
oc

es
so

rs

EM/GIS REPORT NO. 03-01
PAGE 7 OF 9

arrays for each grid; and second, we divided this total
memory by the wall-clock time for each run. We only
tested the original version of the code because we felt
the predictor-corrector version would not show a
significant difference. The amount of work would
approximately double between the original and the
predictor-corrector for the same time step, but the
wall-clock time would also double, thus giving
roughly the same information.

The two operating platforms show almost iden-
tical curves, especially above 500 vertices. The only
differences are in the very coarse grids, where the Sun
platform continues to climb toward better work per
unit time numbers, while the Intel platform tapers off
from its peak. The Sun platform shows a drop-off in
performance between 100,000 and 120,000 vertices.
The Intel platform was not run on that fine of a grid

because its batching system would not allow runs of
those lengths of time. However, because both plat-
forms have 256 KB caches, we believe the Intel plat-
form would show similar behavior to the Sun
platform for these fine grids.

4. Discussion

Although the results in Section 3 were shown in four
parts, it is possible to lump together the discussion of
the east coast and quarter harbor domains with
constant global nodes, because of the similarities
between their methods and results. Thus, discussion
can focus on three main areas: global nodes constant,
local nodes constant, and serial processor runs.

First, for the benchmarking studies that held the
number of global nodes at a constant value, the results
indicate that code version and operating platform
have different effects in different areas. The
predictor-corrector version of the code yields much
shorter wall-clock times than does the original
version, because its enhanced stability allows for a
significantly higher time step. For the east coast, the
difference in time step was a factor of eight; for the
quarter harbor, the difference was a factor of six.
Thus, even though the predictor-corrector requires
roughly twice as much work per time step, its simula-
tions are able to finish in shorter times.

The results also show that simulations on the Intel
platform finish in less wall-clock time than those on
the Sun platform, though the difference is not as
pronounced as that between the two versions of the
code. The differences between the two platforms can
be explained by their operating characteristics: the
Intel’s 1 MHz speed and 256 MB of memory are both
double the Sun’s capabilities. That the Intel platform
does not run twice as fast as the Sun platform is an
indicator that the Intel platform has a bottleneck
somewhere else that is slowing it down.

The scalability graphs for both domains indicate
a minor difference between the two platforms. The
Intel platform provides slightly better speed-up values
than the Sun platform, though the difference is not
significant through 16 processors.

Second, for the benchmarking studies that held
the number of local nodes constant, both variables are
significant. This time, the predictor-corrector version
shows significantly longer wall-clock times than the
original version, because both versions were run at

0

20

40

60

80

0 2 4 6 8 10 12 14 16

Figure 7. Timing information for the quarter harbor
domain, with a constant local problem size. The original
code is shown in blue, while the predictor-corrector code
is shown in red; the Sun simulations are shown with a
smooth line, while the Intel simulations are shown with a
line of diamonds.

Number of Processors

Ti
m

e
(m

in
)

0

2

4

6

8

10 100 1000 10000 100000 1000000

Figure 8. Timing information for the quarter harbor
domain, showing work per unit time vs. problem size. The
Sun simulations are shown with a smooth line, while the
Intel simulations are shown with a line of diamonds.

Number of Vertices

W
or

k
Pe

r U
ni

t T
im

e

EM/GIS REPORT NO. 03-01
PAGE 8 OF 9

the same time step. The higher maximum stable time
step afforded by the greater stability of the predictor-
corrector version does not come into play (for this
test), and thus is not able to counteract the extra time
required by the corrector step. This trend holds for
both operating platforms.

The difference between the platforms is their
ability to handle parallel processing. The wall-clock
times for their serial runs are very similar, but the
times diverge for runs on two processors or more.
The Intel platform shows only a mild increase in wall-
clock time from one to two processors, and shows no
significant change in wall-clock time as the number of
processors is increased to sixteen. The Sun platform
shows a significant increase in wall-clock time
between one and two processors, of almost four
minutes (17.5 percent) for the original version and
almost eight minutes (16 percent) for the predictor-
corrector. The rest of its parallel runs (for 3-16
processors), though, show no significant change in
wall-clock time.

We speculate that this major difference between
platforms is caused by how their communication is
configured. The Intel platform is locally connected,
with a master node that is the only node connected to
the Internet at large and that assigns jobs to the others.
On the other hand, each node of the Sun cluster is
connected to the Internet backbone, so that users can
log on and initiate jobs on any of the sixteen nodes.
Thus, on the Intel cluster, communication between
nodes is over a dedicated network that serves no other
purpose, while on the Sun, communication between
nodes is over a non-dedicated network that is used not
only for this purpose but also for communication with
the Internet at large. The increase in wall-clock time
for the Sun platform from one to two processors is
indicative of this cost of communication.

Finally, for the benchmarking studies on only one
processor, the results indicate that there is no major
difference between the computing performances of
the two platforms. Both show a gradual decrease in
performance before declining significantly when the
problem size reaches 100,000 vertices. Thus, for
processors with a 256 KB L2 cache, it is recom-
mended that the sizes of parallel runs be limited so
that any one processor is not responsible for more
than 100,000 vertices.

5. Conclusions

The primary objectives of this report were to examine
the results of a series of benchmarking tests
conducted using the parallel version of the ADCIRC
hydrodynamic model. These tests compared the
performance of the original version of the ADCIRC
model against that of a similar version that includes a
predictor-corrector time-stepping algorithm. We also
compared the performance of two parallel computing
clusters: one consisting of Sun UltraSparc IIe proces-
sors, and another consisting of Intel Pentium III
processors.

Significant conclusions that we can draw from
this study are listed below.

• The enhanced stability of the predictor-corrector
time-stepping algorithm, already verified in serial,
is also evident in parallel. The algorithm allows
for a higher maximum stable time step, which in
turn allows for shorter wall-clock times.

• The Intel platform is slightly faster than the Sun
platform on problems where the number of global
nodes is held constant and distributed over a vari-
able number of parallel processors.

• Both platforms show similar speed-up values,
though the Intel does slightly outperform the Sun
in some instances.

• The Intel platform offers better communication
between parallel processing nodes than the Sun
platform. While there is a significant difference in
wall-clock times between one and two processors
on the Sun platform, the Intel platform shows only
a slight increase.

• Both processors show a similar computing perfor-
mance on one processor. For a platform with a 256
KB cache, local problem size should be limited to
100,000 vertices.

6. Acknowledgments

Financial support for this research was provided in
part by the National Science Foundation under the
contracts ACI-9623592 and EEC-9912319 and by the
U.S. Department of Defense under contract ONR-
N000140210651. Any opinions, findings, conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
those of the National Science Foundation. The

EM/GIS REPORT NO. 03-01
PAGE 9 OF 9

authors would also like to thank Henry Neeman,
director of the O.U. Supercomputing Center for
Education and Research (OSCER).

7. References

Dresback KM, Kolar RL. An implicit time-marching algo-
rithm for 2-D GWC shallow water models. In CMWR
XIII: Computational Methods in Water Resources, vol.
2, Bentley LR, Sykes JF, Brebbia CA, Gray WG, Pinder
GF (eds). A.A. Balkema: Rotterdam, 2000: 913-920.

Dresback KM, Kolar RL. An implicit time-marching algo-
rithm for shallow water models based on the general-
ized wave continuity equation. International Journal
for Numerical Methods in Fluids 2001; 36: 925-945.

Kinnmark IPE. The shallow water wave equations: formu-
lations, analysis and application. In Lecture Notes in
Engineering, vol. 15, Brebbia CA, Orsszag SA (eds).
Springer-Verlag: Berlin, 1986; 187.

Kolar RL, Gray WG, Westerink JJ, Luettich RA. Shallow
water modeling in spherical coordinates: equation
formulation, numerical implementation and applica-
tion. Journal of Hydraulic Research 1994; 32(1): 3-24.

Kolar RL, Looper JP, Westerink JJ, Gray WG. An
improved time marching algorithm for GWC shallow
water models. In CMWR XII: Computational Methods
in Surface Flow and Transport Problems, vol. 2,
Burganos VNI, Karatzas GP, Payatakes AC, Brebbia
CA, Gray WG, Pinder GF (eds). Computational
Mechanics Publications: Southampton, 1998: 379-385.

Luettich RA, Westerink JJ, Scheffner NW. ADCIRC: an
advanced three-dimensional circulation model for
shelves, coasts and estuaries. Report 1: theory and
methodology of ADCIRC-2DDI and ADCIRC-3DL.
Technical Report DRP-92-6, Department of the Army,
USACE, Washington, DC, 1992.

Lynch DR, Gray WG. A wave equation model for finite
element tidal computations. Computers and Fluids
1979; 7(3): 207-228.

Westerink JJ, Luettich RA, Blain CA, Scheffner NW.
ADCIRC: an advanced three-dimensional circulation
model for shelves, coasts and estuaries. Report 2: Users
Manual for ADCIRC-2DDI, Department of the Army,
USA

