
EM/GIS REPORT NO. 02-01
PAGE 1 OF 12

Improving Performance of the ADCIRC Hydrodynamic Model

E.P. Gilje

R. L. Kolar, K. M. Dresback, and J.C. Dietrich

Environmental Modeling/GIS Laboratory (EM/GIS)
School of Civil Engineering and Environmental Science

University of Oklahoma
Norman, OK 73019

Technical Report No. 02-01

(Keywords: shallow water modeling, GWC equation, finite elements)

Abstract

This project’s goal is to improve performance of the ADCIRC hydrodynamic
Model. Two main areas of research were conducted. The first area involved a
benchmarking study on a Linux cluster. These results were then compared to bench-
marking results from a SUN cluster. To get a complete view of ADCIRC’s perfor-
mance both the job size and number of processors being used were varied both
individually and simultaneously. By doing this conclusions were able to be drawn
about the communication costs between processors, the effect of cache, as well as
how the type of grid effects the ADCIRC run. The second area of research tried to
further enhance the efficiency of ADCIRC by adding the NetCDF file type to
ADCIRC. Results from this led to conclusions about how much time and space
could be saved by ADCIRC by using different file types.

EM/GIS REPORT NO. 02-01
PAGE 2 OF 12

Introduction

The ADCIRC (ADvanced three-dimensional
CIRCulation model) hydrodynamic model was
initially created by Westerink and Luettich for the
Army Corps of Engineers to aid them with dredging.
However, ADCIRC can also be applied to a variety of
other applications ranging from modeling hurricane
storm surges to modeling current patterns in coastal
areas. ADCIRC uses shallow water equations to
model the hydrodynamic behavior in these varied
applications (Kolar et al 1994). Both the wave conti-
nuity equation (WCE) and the generalized wave
continuity equation (GWCE) improved the finite
element solutions to these equations. Lynch and Gray
(1979) introduced the WCE to suppress the spurious
oscillations inherent to the primitive equations
without dampening the solution either artificially or
numerically. Kinnmark (1986) introduced the GWCE
an d replaced the bottom friction tau with the numer-
ical parameter G.

In non-linear applications ADCIRC encounters
stability problems unless a severe Courant number
restriction is imposed. For stability of the model the
upper bound of the Courant number is set at .5, this
would need to be further tightened if the simulation
contained barrier islands and constricted inlets. In
order to combat this restriction an alternative time-
marching algorithm procedure was implemented so
that some or all of the non-linear terms are treated
implicitly (Kolar et al 1998). This algorithm is called
the predictor corrector algorithm and is able to
increase the maximum stable time step in both one
and two dimensional applications (Dresback et al.
2001; Dresback et al. 2000). Thus this benchmarking
study will evaluate the behavior of both this predictor
corrector algorithm and the original algorithm.

Although the predictor corrector algorithm can
greatly speed up the run time of ADCIRC, output file
sizes can still be immense. Currently ADCIRC I/O
can be of two file types, binary and ASCII. The binary
file type is relatively small as well as fast, however, it
is platform dependent. ASCII text is relatively slow
and large and is not platform dependent. The NetCDF
file type will hopefully provide the best of both
worlds with faster output, smaller file sizes, and plat-
form independence

Materials and Methods

For this study a Linux cluster located in the
Computer Science Department at the University of
Oklahoma was used. Benchmarking times from the
Linux cluster were compared with times from a SUN
cluster located in the GIS lab located in the Depart-
ment of Civil Engineering and Environmental
Science at the University of Oklahoma. Here is a table
to compare the main components of the Linux and
SUN clusters. On the right is the Linux cluster which
uses Intel Pentium III chips, on the left is the Sun
cluster which uses Sun. UltraSparc IIe chips.

In this case benchmarking runs consisted of either
varying the number of processors for the job, the size
of the job, or both. For the east coast grid and the
quarter-circle harbor grid the number of processors
for the grids were varied. Each ADCIRC grid consists
of a certain number of vertices and it will calculate
data at each of these vertices. For the Q-series bench-
marking both the number of vertices and the number
of processors was varied. In order to measure the cost
of communication between processors the Q-series
consists of runs where 5000 =(the size of the job)/
(number of processors). By doing this each processor
will have the same number of vertices assigned to it
regardless of the number of total processors doing the
job. Single processor runs where the number of
vertices were varied were also done with the quarter-
circle harbor grid to examine the work per unit time of
the processors. Each set of runs except for this last one
were done using both the original code and the
predictor-corrector code, these run at their respective

Table 1. Sun Cluster vs. Linux Cluster

Component Sun UltraSparc
IIe

Intel Pentium
III

Speed 500 MHz 1GHz

Cache 256 KB 256KB

Memory 128 MB 256 MB

Communication 100 Mb/s 100 Mb/s

Compiler Sun Forte 6.0 NAG

MPI Sun Cluster
Tools

MPIch

Total Cost $19,300 $27,500

EM/GIS REPORT NO. 02-01
PAGE 3 OF 12

maximum stable time steps, for the predictor
corrector code the maximum stable time step was
many times higher than for the original code. One last
note on how the benchmarking was conducted, the
actual times recorded for each of the runs are the wall
clock time which was received from the “time”
command and were compiled with the -O flag
(Appendix B)

For the NetCDF aspect of this project the
NetCDF libraries were obtained from the website of
the University Corporation for Atmospheric
Research. The software is free and all installation
instructions are provided on the site. An online
manual with coding and other instructions is also on
the site. In order to initially test out the effectiveness
of NetCDF it was first implemented in a 1-Dimen-
sional version of the ADCIRC code, after this it was
then implemented on a 2-Dimensional example. In
the 2-Dimensional code NetCDF modifications were
made in four main areas: a) the adcirc.F file, the
timestep.F file, the global.F file, and where the input
is read in. In the adcirc.F file the NetCDF data set was
created, in the timestep.F file variables were stored in
the NetCDF file and in the global.F new variables
were declared for use in the NetCDF modifications.
Finally the last modification that was made was where
the input was read in, here an additional option was

set where a user could enter in the number 3 in their
input file and they would get netcdf output, previ-
ously, only 1 and 2 (binary and ASCII) were consid-
ered valid. A rather detailed explanation of some
basic NetCDF coding for Fortran 90 is included in
Appendix A.

Results

East Coast Grid Results

Figure 1.1 - Unfortunately results that included
all 16 processors could only be obtained for the
predictor corrector SUN code. One processor on both
the Linux and the SUN cluster went down and were
unable to be repaired for this study. However, general
trends can still be seen from the data that were
collected. All of the Linux cluster runs were faster
than the SUN cluster runs with the notable exception
of the single processor run. Predictor-corrector runs
also always ran faster than runs that used the original
code. Finally, as you increase the number of proces-
sors used in the runs there is always a decrease in
time.

Figure 1.2 - For better visualization of the rela-
tionship just discussed this graph shows the speed-up
of the results from the east coast runs. What this graph

Figure 1.1 - W all-Clock T im e vs. Num ber of Processors
East C oast Grid, ~30K N odes, Maximum Stable Time Step

0

20

40

60

80

0 2 4 6 8 10 12 14 16

Number of Processors

W
al

l-C
lo

ck
 T

im
e

(m
in

)

O rigina l AD C IR C (Sun) Predic to r-C orrec to r AD C IR C (Sun)

O rigina l AD C IR C (Pentium) Predic to r-C orrec to r AD C IR C (Pentium)

EM/GIS REPORT NO. 02-01
PAGE 4 OF 12

attempts to do is to show what effect adding one
processor to the run affects the run-time. In addition
to the results from the runs there is a theoretical
speed-up line. This line represents what the theoret-
ical speed up should be. For example, if a run takes
ten minutes on one processor than theoretically it
should take five minutes on two processors. This line
represents this theoretical relationship.

Linux cluster results for the original code had a
super-linear speed up for all runs except the run on 14
processors, thus doing better than it theoretically
should have on most runs. Linux cluster results for the
predictor-corrector code were super-linear until about
10 processors, at which point they became sub-linear.
SUN cluster results did not have as good a speed-up,
they were sub-linear through all processors for both
the predictor-corrector and the original pieces of
code.

Quarter-Circle Harbor Grid Results

Figure 2.1 - Much of what was said of the east
coast grid results apply to the quarter circle grid
results but there were some notable exceptions. Linux
cluster times always beat SUN cluster times even on
one processor which the SUN cluster had done better
on in the east coast grid results. However, as was the
case with the east coast grid results the predictor

corrector times were always better than the original
times. Here again, though, some technical difficulties
were encountered, predictor corrector results on both
the SUN cluster and Linux cluster on eleven proces-
sors were unable to be obtained, ADCIRC would
continuously crash when attempts at these runs were
made. In addition to this there were still processors
down on both the Linux and SUN clusters so no 16
processors runs could be done on the Linux cluster
and no 15 processor run could be done on the original
code on the SUN cluster.

Figure 2.1 - This graph shows the speed-up of the
quarter-circle harbor grid results. The theoretical line
on the graph is the same as the one described in the
east coast grid results section. Linux cluster times
again provided a better speed-up than SUN cluster
times, the Linux cluster original code was superlinear
through all processors and the predictor-corrector
code was superlinear until about ten processors at
which point it became just linear. SUN cluster results
started off as near linear, but as the number of proces-
sors increased they quickly became sub-linear. One
other thing to note is that the speed-up lines on this
graph are a lot smoother than those on the east coast
grid.

Q-Series Results

Figure 1.2 - East Coast Grid
Real-Time Speed-Up Compared to One Processor

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18
Number of Processors

Sp
ee

d-
U

p
vs

. O
ne

 P
ro

ce
ss

or

O rig inal ADCIRC (Sun) P red ictor-Corrector ADCIRC (Sun)
O rig inal ADCIRC (Pentium) P red ictor-Corrector ADCIRC (Pentium)

EM/GIS REPORT NO. 02-01
PAGE 5 OF 12

Figure 2.1 - Wall-Clock Time vs. Number of Processors
Quarter-Circle Harbor Grid, 100K Nodes, Maximum Stable Time Step

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 2 4 6 8 10 12 14 16 18 20
Processors

W
al

l C
lo

ck
 T

im
e

(h
ou

rs
)

O rig inal ADCIRC (Sun)
Pred ictor-Corrector ADCIRC (Sun)
O rig inal ADCIRC (Pentium)
Pred ictor-Corrector ADCIRC (Pentium)

Figure 2.2 - Real-Time Speed-Up Compared to One Processor
Quarter-Circle Harbor Grid, 100K Nodes, Maximum Stable Time Step

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18
Processors

Sp
ee

d-
U

p

Original ADCIRC (Sun) Predictor-Corrector ADCIRC (Sun)
Original ADCIRC (Pentium) Predictor-Corrector ADCIRC (Pentium)
Ideal

EM/GIS REPORT NO. 02-01
PAGE 6 OF 12

Figure 3.1 - As the number of processors increase
there is a general trend for the time to increase as well.
However there are some deviations from this, the
Linux predictor-corrector code runs at two, seven,
thirteen, and fourteen, Linux original runs at eleven,
thirteen, as well a predictor-corrector SUN cluster run
at fourteen all have a decrease in the amount of time,
even though a processor is being added. Despite these
small deviations the upward trend is still discernible,
furthermore, the upward trend on the SUN cluster is
greater the one on the Linux cluster, thus the SUN
cluster lines have a greater slope. Difficulties were
once again encountered on some of these runs, the
eleven, twelve, and thirteen processors runs on the
predictor-corrector code on the SUN cluster continu-
ously crashed. Unfortunately here again processors
were also down on the Linux and SUN clusters so the
only sixteen processor run that was completed was on
the original code on the SUN cluster.

Single Processor Harbor Grid

Figure 4.1 - This graph shows us the effects of all
the workload being put on one processor, and then
increasing that workload. There is a noticeable down-
ward trend for both the Linux and SUN clusters, as the

workload increases the work per unit time decreases.
The important aspects of this graph are that when the
SUN cluster reached a grid of 100,000 vertices there
was a distinct drop off in the work per unit time. In
addition to this there is a peculiar loop up in the Linux
cluster results, then at 1,000 vertices the results align
with the SUN cluster results.

NetCDF results

When NetCDF was used in the one dimensional
code it had a drastic affect, cutting down the run time
by 1/2 and the file size by 2/3. However, when
NetCDF was applied towards the much more

Table 2.

type
of

code

run time
with

NetCDF
(min)

run time
without
NetCDF

(min)

output file
size with
NetCDF
(bytes)

output file
size

without
NetCDF
(bytes)

1-D 0:25 1:08 11,376 35,944

2-D 31:19 31:18 4,126,400 12,426,162

Figure 3.1 - Wall-Clock Time vs. Number of Processors
Quarter-Circle Harbor Grid, Constant 5000 Nodes per Processor, Time Step of 25 Seconds

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18
Processors

W
al

l C
lo

ck
 T

im
e

(m
in

)

O rig inal AD C IR C (SUN) Predictor-C orrector AD C IR C (SUN)
O rig inal AD C IR C (Pentium) Predictor-C orrector AD C IR C (Pentium)

EM/GIS REPORT NO. 02-01
PAGE 7 OF 12

complex two dimensional code it did not have a
significant effect on the time but it did reduce file size
by 2/3.

Discussion

East Coast Grid

Several important questions arise from the results
of the east coast grid. One of the most obvious is: why
does the SUN cluster run this grid faster than the
Linux cluster on a single processor, when the Linux
cluster has faster processors. Well processor speed is
not the only factor in how long it takes for a run to
complete, cache size, communication speeds, and
many other factors play a role in how long it takes a
cluster to compute information. In the one processor
case the SUN cluster had some of these other things
that were better than what the Linux cluster had, so
the SUN cluster had faster times. Furthermore, the
Linux cluster was then able to have better times on the
multiple processor runs because these things that the
SUN was doing better on the single processor runs
were more than compensated for by the fact that the
Linux cluster has better communication between its
processors than the SUN cluster has.

The one processor runs were the hardest part of

these results to explain. The predictor-corrector being
faster than the original code is explained by the fact
that even though the predictor-corrector causes nearly
twice as many computations to occur, it is being run a
much higher time step, and this more than compen-
sates for these extra computations. As previously
explained the Linux cluster has faster times than the
SUN cluster on multiprocessor runs because it does
have faster processors and better communication
between processors, these and other factors combine
to compensate for the things that the SUN cluster does
better.

As far as the scalability graph is concerned, why
does the Linux cluster get super-linear speed-up?
There are probably several factors that contribute to
this. First of all for some reason the one processor
runs on the Linux cluster just take a longer amount of
time in comparison to the multi-processor runs, and
since everything in this graph is compared to the one
processor runs, it makes the multi-processor runs look
good. One possible reason for this could be that the
Linux cluster is getting good cache re-use. With only
one processor there is only one cache, but with two
processors there are two caches, so the more data that
is being stored in cache the faster the run time is, and
if the cache re-use is over compensating for the addi-
tional communication time between processors then a

Figure 4.1 Work per Unit Time vs. Number of Vertices
Quarter-Circle Harbor Grid, Single Processor Runs

0

1

2

3

4

5

6

7

8

10 100 1000 10000 100000 1000000
Vertices

W
or

k
pe

r U
ni

t T
im

e

Orig inal ADCIRC (SUN) Orig inal ADCIRC (Pentium)

EM/GIS REPORT NO. 02-01
PAGE 8 OF 12

super-linear speed-up scenario can occur. In all likely-
hood this is one of several things contributing to this
super-linear speed-up.

This explanation of what is occurring can be
applied to what is happening to the SUN cluster’s
speed-up, however, rather than the cache overcom-
pensating for the communication costs, it is the other
way around. Communication costs are overwhelming
any benefit that is obtained from this cache use, thus
creating a scenario where sub-linear speed-up occurs.
Two main factors could be the cause for this differ-
ence in communication. The first is that the Linux
cluster has better communication software, and this
enables the processors to talk to one another faster.
The second is that the SUN cluster is a public cluster,
meaning that the processors are connected to each
other through the building’s network, so theoretically
data might have to travel all around the building
before it got back to the other processor it was looking
for. The Linux cluster on the other hand is a private
cluster, each processor has a more direct communica-
tion with each other. Both of these factors contribute
significantly to why one cluster has super-linear
speed-up and the other has sub-linear speed-up.

Quarter-Circle Harbor Grid
Results from the east coast grid and the quarter-

circle harbor grid are very similar, however, there are
a few main differences. In the quarter-circle harbor
grid results the Linux cluster one processor run is
faster than the SUN cluster one processor run. How
could this be? Well the important thing to realize is
that these two grids are very different, the quarter
circle harbor grid is a much more homogenous grid
with nice smooth boundaries. The east coast grid on
the other hand has much more complex coastal
boundaries that match the real shape of the eastern
coast line of the United States boundaries, as well as
including some islands in the Caribbean. While it may
seem that this difference should not have an effect, it
does, for one thing it provides more noise in the times
from the east coast grid, and it might cause some of
the components that the SUN cluster had that made it
perform better on a heterogeneous grid may not
matter as much on a homogenous grid. Not to
discount the previous argument that was provided
about why the SUN cluster is faster than the Linux
cluster on the east coast grid, that argument still
stands up, because we can see that the difference
between the one processor and two processor times is

much greater on the Linux cluster than the SUN
cluster, so there is obviously a battle going on
between cache and communication. The issue here
however, is that the homogeneousness of the grid also
comes into play.

Outside of the one processor results everything
else is relatively easy to explain, if we follow the logic
previously given in the east coast grid discussion,
then it is expected that on multiprocessor runs the
Linux cluster would always be faster than the SUN
cluster and the predictor-corrector version of the code
would be faster than the original version of the code.

When comparing this speed up graph to that of
the east coast grid it is easy to see that we have a more
homogenous and uniform grid. The speed-up lines are
nice and smooth, however, they do follow the general
trend of the east coast grid speed-up grid, and much of
that explanation can be used here. Again the single
processor time was much greater than multi-processor
times for the Linux cluster, thus helping to reinforce
the fact that the cache is overcompensating for the
communication between processors, thus having a
superlinear speed-up. The reverse of this can be used
for the SUN speed-up lines, the communication is
winning the battle over the cache in this case and
cause in a sub-linear speed-up.

Q-Series

In the quarter series results it becomes very
apparent how much better the communication is
between processors in the Linux cluster is versus that
of the SUN cluster. Both do have a general trend of
increasing the number of processors when you
increase the amount of time, however, for both the
predictor corrector code and the original code the
slope is less for the Linux cluster than the SUN
cluster. If we examine the jumps between single
processor and two processor times we can further see
how significant this communication cost it. The
difference on the SUN cluster is about eight minutes
on the predictor corrector code, and five minutes on
the original code. If we look at the Linux cluster, its
time actually goes down by about two minutes on the
original code and it goes slightly up by less than a
minute on the predictor corrector code. These
communication costs are what makes the biggest
difference between these clusters. Keep in mind too

EM/GIS REPORT NO. 02-01
PAGE 9 OF 12

that for these results that cache should not a have a
significant effect since on each run each processor
should be getting the same number of vertices as it did
in a run with fewer processors, since 5,000 vertices
are being added on each run.

Unlike the previous results both the predictor-
corrector code and the original code were being run at
the same time step. Since the predictor-corrector code
has twice as many computations as the original code
the fact that the predictor-corrector code times are
twice as long as the original code times is easily
understood.

Single Processor

The primary goal of these results was to get an
idea of how big a job had to be before it overwhelmed
a processor. For the SUN cluster this appears to
happen at right about 100,000 vertices per processor.
Unfortunately, Linux cluster runs did not extend this
far, so there is some uncertainty as to what the work
load per processor needs to be for the Linux proces-
sors to be overwhelmed. More work needs to be done
on the Linux cluster to figure this out. The most pecu-
liar thing about this graph is that the SUN cluster has
a pretty steady downward trend from 100 vertices on,
while the Linux cluster has a hump and then has a
steady downward trend starting at about 1,000
vertices. The only explanation for this is some sort of
noise. Runs that are done at less than 1,000 vertices
take such a small amount of time, small time differen-
tials can cause things such as this to occur, thus, this
is not a big trend that would cause any worry, because
the most significant thing that this graph says is that at
100,000 vertices the SUN cluster processor is over-
whelmed.

NetCDF

The only significant conclusion that can be drawn
from these results is that no matter how complex the
version of ADCIRC might be, NetCDF can signifi-
cantly cut down on the file output size. Even though
NetCDF did cut down the amount of time that one
dimensional ADCIRC took to run significantly, this
run was not all that long, it was only a difference of
about thirty seconds, and the difference for the two
dimensional run was almost nothing. Run-time is
much more heavily dependent on precisely how
NetCDF is encoded into ADCIRC, rather than if it is

just used. If NetCDF is coded inefficiently it could
take much longer than ADCIRC takes without using
NetCDF. There was probably not a significant change
in time on the two dimensional code because it was so
complex, so it was more difficult to code efficiently,
and it is possible that the time it takes to write to a file
is not as significant as the other processes it is under-
taking. Whereas with the one dimensional code the
dominant process was writing to a file, so NetCDF
was able to do this much faster, the one dimensional
code was also far simpler so it was easier to imple-
ment NetCDF in an efficient way.

Conclusions

Several issues dealing with the performance and
the improvement of ADCIRC have been discussed
dealing with both NetCDF and benchmarking.
Benchmarking has revealed that there are in fact
many things that contribute to run time. With the
results from the quarter-circle harbor grid and east
coast grid it was apparent that there is a battle between
cache and communication costs, and that these had
significant effects on what happened. Yet overall it is
clear that the Linux was able to get the better of this
battle, however, it did for the most part have better
and more expensive components. Through bench-
marking the effects of homogeneous vs. non-homog-
enous grids could also be seen. Q-series results added
further proof to the ideas that the Linux cluster is
getting much better communication than the SUN
cluster. The single processor runs also showed that
100,000 vertices/processor is an extremely important
an valuable cut off point for the SUN cluster. Finally,
NetCDF turned out to be a viable solution for cutting
down on file sizes but not for cutting down on run
time.

Appendix A: NetCDF

The following are some guidelines and instructions
dealing with NetCDF in order to enable other people who
are working on ADCIRC to become familiar with it.

Methodology:

1) Follow the installation instructions that are online
at the unidata website.

EM/GIS REPORT NO. 02-01
PAGE 10 OF 12

2) Link NetCDF to the directory where it is going to
be used.

a)For the 1-D code you only have to do this
once. type: “ln -s/usr/local/src/netcdf-3.5.0/src/
f90/netcdf.mod”

b)For the 2-D code you also have to only do this
once, but the way you do it is different. Link to
the directory that you run the “gmake adcirc”
command. If you run the “gmake adcirc”
command the link will go in the odir4 directory,
to recompile adcirc after this initial compilation
type “rm -R odir4,” and remove every file but
the NetCDF file then proceed to run the “gmake
adcirc” again.

3)For the 1-D code you will need to compile the
adcirc code every time you change it by typing “f90
-c adcirc.cdf.f90” for example. Then in order to
finish the compilation you will need to type some-
thing like “f90 adcirc.cdf adcirc.cdf.o -L/usr/local/
src/netcdf-3.5.0/src/lib -lnetcdf” Then you should
be able to run the executable just by typing “adcirc”

4)In order to incorporate the previous step into the 2-
D code you will need to modify the compiler flags.
NetCDF is incompatible with the “-dalign” flag so you
must remove that. Then you must modify where the
flags link to things so that it will link to the netcdf
libraries. For example you might add to FFLAGS5 a
line that says “-L/usr/local/src/netcdf-3.5.0/src/lib.”
Then right under the line that says “LIBS” and links to
metis, you must add a line of code that says “LIBS2 :=
-L/usr/local/src/netcdf-3.5.0/src/lib -lnetcdf.” After
completing this step you should be ready to compile
NetCDF code with ADCIRC with no problems.

NetCDF Coding

Here are some instructions on NetCDF coding,
however, for the most in depth instructions it is best to refer
to the NetCDF handbook.

In order to use the NetCDF module you must put the
“USE netcdf” statement before the “implicit none” in each
file you are coding in. In addition to this the other main
thing to remember when dealing with NetCDF is that
whenever you open, or create a NetCDF file you must at
some point close it when you are done using it.

status = NF90_CREATE(“netcdf.nc”,
NF90_CLOBBER, ncid)

This line of code creates a netcdf data set. The data
sets name is netcdf.nc, the NF90_CLOBBER means that if
there is already a netcdf.nc that exists it will be overwritten,
and finally, the ncid is an integer value that is the ID
number of the data set. NF90_CREATE will return an
integer which will be assigned to “status.” The purpose of
this is to pick up any errors that might occur. If there has
been an error an invalid value will be assigned to “status”.
In order to see what the error is you can add a line like this

if (status /=nf90_noerr) call handle_err(status)

Of course you must then create a handle_err subrou-
tine and there is a good example in the netcdf handbook.
The next step in creating a netcdf data set is to set the
dimensions of your variables, for example.

status = NF90_DEF_DIM(ncid, “GElevNetY” ,
NDSETSE, GElevNetY)

Here the “ncid” means that this dimension belongs to
the data set with the ID “ncid,” the “GElevNetY” is the
name of the dimension, the “NDSETSE” is a variable from
ADCIRC and it denotes the size of the dimension, and
finally the GElevNetY is the dimension ID. After assigning
all the dimensions that you need, you must then create the
variables that you will need, for this you will use a line such
as this.

status = NF90_DEF_VAR(ncid, “VelocityStations” ,
NF90_DOUBLE, (/VelNetW/), velSID)

Again the “ncid” means that this variable is part of the
netcdf data set with the ID ncid, the name of this variable is
“Velocity Stations”, NF90_DOUBLE is the data type,
VelNetW is the ID of the dimension that the variable has,
and velSID is the ID of the variable. After this you can exit
the define mode, make sure that when you do this all the
variables you will need have been defined. The next step is
storing values in the variables, this will probably look
something like this.

status = NF90_PUT_VAR(ncid, runinfoID, VALUE,
(/2/))

Again the “ncid” means this variable is stored in the
netcdf file with the ID ncid and the variable with the ID
runinfoID, the value that is actually being stored is
VALUE. Whenever you are done with the netcdf file you
must close it by doing.

status = NF90_CLOSE(ncid)

EM/GIS REPORT NO. 02-01
PAGE 11 OF 12

This line will close the netcdf file with the ID of ncid.
To best optimize your code you should minimize the
amount of times you open and close the data set. If you
have already created the data set and need to access it after
you’ve closed it you can use the NF90_OPEN to interact
with it again.

Appendix B: Compiler Flags

In addition to the benchmarking studies, I also took
a look at the compiler flags that ADCIRC was ran with.
The Compiler flag that I did all of the benchmarking with
was the -O flag, which is also the same as the -O2 flag.
On a basic run with ADCIRC I compared the -O1, -O2, -
O3, -O4, -Ounsafe, -Oassumed.

Acknowledgements

I would like to take this opportunity to thank the
National Science Foundation for providing the funding for
this research project. The opinions, views, and findings do
not necessarily reflect those of the National Science Foun-
dation.

References

Dresback KM, Kolar RL. An Implicit time-marching
algorithm for 2-D GWC shallow water models. In
CMWR XII: Computational Methods in Water
Resources, vol. 2, Bentley LR, Sykes JF, Brebbia CA,
Gray WG, Pinder GF(eds). A.A. Balkema: Rotterdam,
2000: 913-920.

Dresback KM, Kolar RL. An implicit time-marching algo-
rithm for shallow water models based on the general-
ized wave continuity equation. International Journal
for Numerical Methods in Fluids 2001; 36: 925-945.

Kinnmark IPE. The shallow water wave equations: formu-
lations, analysis and application. In Lecture Notes in
Engineering, vol 15, Brebbia CA, Orsszag SA (eds).
Springer-Verlag, Berlin, 1986; 187.

Kolar RL, Gray WG, Westerink JJ, Luettich RA. Challow
water modeling in spherical coordinates: equation
formulation, numerical implementation and applica-
tion. Journal of Hydraulic Research 1994; 32(1): 3-24.

Kolar RL, Looper JP, Westerink JJ, Gray WG. An
improved time marching algortihm for GWC shallow
water models. In CMWR XII: Computational Methods
in Surface Flow and Transport Problems, vol. 2,
Burganos VNI, Karatzas GP, Payatakes AC, Brebbia
CA, Gray WG, Pinder GF (eds). Computational
Mechanics Publications: Southampton, 1998: 379-385.

Luettich RA, Westerink JJ, Scheffner NW. ADCIRC: an
advanced three-dimensional circulation model for
shelves, coasts, and estuaries. Report 1: theory and
methodology of ADCIRC-2DDI and ADCIRC-3DL.
Technical Report DRP-92-6, Department of the Army,
USACE, Washington, DC, 1992.

Lynch DR, Gray WG. A wave equation model for finite
element tidal computations. Computer and Fluids
1979; 7(3): 207-228.

Westerink JJ, Luettich RA, Blain CA, Scheffner NW.
ADCIRC: an advanced three-dimensional circulation
model for shelves, coasts and estuaries. Report 2: Users
MAnual for ADCIRC-2DDI, Department of the Army,
USACE, Washington, DC, 1994.

Table 3.

Flags Real Time User Time System
Time

-O1 1:11 1:05 0:01

-O2 1:06 1:00 0:01

-O3 1:08 1:07 0:01

-O4 1:09 1:02 0:01

-O2
-Ounsafe

0:58 0:51 0:01

-O2
-Ounsafe
-Oassumed

1:00 0:52 0:01

no flags 2:26 1:08 0:01

EM/GIS REPORT NO. 02-01
PAGE 12 OF 12

