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Abstract
In shelf regions with steep bathymetry in the presence of density gradients,

the computation of the baroclinic pressure gradient term in 3D shallow water
models may either become unstable or physically unrealistic. This manuscript
examines four algorithms to compute the baroclinic pressure gradient term in finite
element models. Two common systems for discretizing the vertical are sigma or z-
level coordinates. In turn, permutations of these two coordinate systems serve as the
basis for the four different algorithms examined herein. All are implemented in the
context of the finite element hydrodynamic model, ADCIRC. Several density
gradients that vary horizontally and vertically, with the pycnocline occurring at
different depths, are used to evaluate the methods in a three-dimensional box grid
with variable bathymetry. Initial testing, the subject of this work, focuses on model
behavior for simplified problem with known analytic solutions. Long term goals for
this study (the subject of subsequent papers) are three-fold: 1) to determine the
vertical node placement algorithm that produces the most stable and physically
realistic results; 2) to determine the interplay of vertical and horizontal resolution
(and bathymetry and density profile), while considering simulation time; and 3) to
produce accurate 3D flow fields and baroclinic pressure gradients. Outcomes from
the study will be used to direct on-going modeling research in the Mississippi
Sound. 

Introduction
Background

An accurate prediction of tides and circulation patterns using hydrodynamic
models is useful in a wide variety of civilian and military applications that range
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from forecasting storm surges from extreme events, such as tsunamis and
hurricanes, in order to plan development in coastal areas to predicting circulation
patterns in order to guide fleet operations. Moreover, the accuracy of water quality
models depends heavily on an accurate, robust hydrodynamic model. One class of
models that finds frequent use for these and other applications are the so-called
shallow water models.

Shallow water equations in 2D are obtained by vertically averaging the mass
and momentum balances over the depth of the fluid. For our applications, we solve
the equations using algorithms amenable to irregular triangular meshes (e.g., finite
element, finite volume). Such a meshing technique allows grids to be easily refined
in shallow coastal areas or in areas with changing topography where high resolution
is needed to accurately resolve tidal constituents and circulation patterns. Also
irregular coastal boundaries are more accurately described with triangular elements,
and flux-type boundary conditions enter the problem naturally. Models in this class
include ADCIRC [16], QUODDY [22], and UTBEST [5]. Finite difference based
models, such as SIMSYS2D[15], CH3D [4], and POM [30] that use a staggered grid
on an orthogonal curvilinear mesh, are stable and mass conservative, but their grids
are not as inherently flexible as those based on irregular triangular meshes [15, 29]. 

Early finite element solutions of the shallow water equations were often
plagued by spurious oscillation modes. Various methods were introduced to
eliminate the oscillations, but most include some type of artificial or numerical
damping [27, 31]. Lynch and Gray [21] present the wave continuity equation as a
means to eliminate spurious oscillations without resorting to artificial damping. It
is currently the base algorithm in ADCIRC (ADvanced 3D CIRCulation model
[16]), the model that is the subject of this research. 

Since the inception of the wave continuity formulation in 1979, the original
algorithm has been modified in a number of substantial ways: Kinnmark introduced
a numerical parameter to provide a general means of weighting the continuity
equation [11]; viscous dissipation terms were incorporated [12, 20]; and 3D
barotropic simulations were realized by resolving the velocity profile in the vertical
[16, 25]. Most recently, the model has incorporated the following features: a
wetting/drying algorithm for near-shore elements [17]; spherical coordinates for
large domains via a map projection technique [13]; a parallel domain
decomposition algorithm for the 2D portion of the code [26]; a fully implicit time
marching algorithm [6]; options for hydraulic structures (e.g., levees, breakwaters);
and a diagnostic baroclinic algorithm [18]. These advances are all present in the
current version of the ADCIRC model, a model that represents over 20 years of
research and development by scientists and engineers at six different institutions.
ADCIRC has been extensively tested using analytical solutions and field data, and
it is being used by a diverse group of researchers and practitioners to model the
hydrodynamic behavior of many coastal and oceanic regions [2, 7, 8, 10, 23, 34].



3 Dresback, Blain and Kolar

Long-Term Research Objectives
Our long-term research objective is to modify the existing hydrodynamic

model, ADCIRC, so that it is capable of 3D prognostic baroclinic simulations on
high performance (massively parallel) computing platforms. As a first step toward
that objective, we have inaugurated a systematic study to determine the interplay
between the level of horizontal and vertical resolution, the type of vertical
coordinate system, and bathymetry and density profiles. Several others (e.g. [1, 9])
have examined the impact of the type and/or amount of resolution of vertical
coordinates on solution results, but they were done either in the context of finite
difference models or a static grid. For example in the framework of a finite element
model, Walters and Foreman [32] investigated the effect of horizontal resolution for
a fixed vertical resolution (and vice versa) on velocities using sigma coordinates. In
their paper, they found that the sigma coordinate system in test cases for a
continental shelf region produced either second or first order accurate solutions,
depending on the density profile. Lastly, they concluded that sigma coordinates
should not be used for the types of problems they studied and should be replaced
with either level coordinates or post-processing the density field and using a density
gradient. Fortunato and Baptista [9] looked at the vertical placement of nodes in the
framework of finite elements for a barotropic tidal model. They found that an
efficient placement of the vertical nodes may take care of the strong dependence of
errors in the local flow properties, however this is not possible with the z-level and
traditional sigma coordinates. They introduced localized sigma coordinates, which
allowed for more flexibility in the placement of nodes. This proved to be strong
alternative to the traditional uniformly distributed sigma and z-level coordinates.
Our aim is to build on their efforts, also using finite element hydrodynamic models,
by examining several vertical coordinate systems and looking at the interplay of
horizontal and vertical resolution. 

This intense focus on the 3D behavior of the code is motivated by
anomalous results that were observed by Blain [3] in a baroclinic Arabian Gulf
simulations using a wave continuity based FE model. Figure 1 illustrates the
problem, where the source of error was identified as unrealistic (and unstable)
baroclinic pressure gradients computed by the model in a region of steep
bathymetry and density gradients. Hence, our initial efforts have focused on
developing a protocol to study computed gradients and the resulting flow field. 

Initial Studies 
Because of the focus on ADCIRC, in the remainder of this paper we present

the theoretical basis of the ADCIRC model, starting with the continuum equations
and the method of discretization. We then outline the experimental methods along
with results from the numerical experiments. For any long term study such as this,
a natural first step is to compare model results for simple problems to known
analytical solutions. This initial testing is the focus of this paper. From these results,
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we can draw some preliminary observations, which help set the stage for future
work.

Theoretical Construct - The Conservation Equations 
As with nearly all prominent 3D coastal circulation models, ADCIRC uses

a mode splitting scheme to solve the 3D balance laws. In this algorithm, which has
several variants, the external mode solves the 2D (depth-averaged) continuity
equation for the free surface elevation; it is then used to force the internal mode
solution of the 3D momentum equations, a step that resolves the 3D structure of the
velocity field. The governing equations are summarized below. A full development
can be found in the ADCIRC user’s manuals [16, 18, 33]. 

Primitive forms of the 2D balance laws are obtained by vertical averaging
of the microscopic balance laws (i.e., those obtained from basic fluid dynamics)
over the total fluid depth. With operator notation, the primitive form of the
continuity equation, , is 

(1)

where  is surface elevation above a datum,  is the total fluid depth, and  is the
2D depth-averaged velocity. The conservative form of the momentum equation,

, is given by 

(2)

where  is the Coriolis parameter,  is the atmospheric pressure at the surface, 
is the effective earth elasticity factor,  is the Newtonian equilibrium tidal potential,

Figure 1. Instabilities (large vectors) caused by errors in the
calculation of the baroclinic pressure gradient
during simulations of the Arabian Gulf [3]. 
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 is reference fluid density,  is gravity, K is the depth-integrated horizontal
momentum diffusion, D is the momentum dispersion (momentum transfer due to a
non-uniform velocity profile), B is the depth-integrated baroclinic forcing,  is the
bottom stress, and  is the surface stress. 

The generalized wave continuity (GWC) equation, is formed from the
following operation:

 (3)
where  is a numerical parameter. It is used in lieu of (1) to solve for free surface
elevation. Note that the wave continuity equation, as it originally appeared in Lynch
and Gray [21], is obtained by setting . Also note that the primitive continuity
equation can be viewed as a limiting form of the generalized wave continuity
equation by letting . 

The 3D momentum equations, used by the internal mode solution (after
applying the Boussinesq and hydrostatic pressure approximations), are given in
non-conservative form by 

(4)

where , ,  are the  components of velocity
(or East, North, and vertical if spherical coordinates are used), respectively,  is the
3D gradient operator,  is the 2D gradient operator in the -plane,  is the
vertical stress, n is the lateral stress gradient, and b is the baroclinic pressure
gradient given by

(5)

Numerical Implementation
Semi-discrete equations are obtained by interpolating the GWC equation

with C0 linear finite elements (triangles). Exact quadrature rules are used
throughout. Implicit time discretization of the GWC equation uses a three-time-
level approximation centered at . In 3D, a mode splitting algorithm is used where
the GWC (3) is solved for nodal elevations and the 3D momentum equation (4) is
solved for the velocity field. The default algorithm in ADCIRC is to compute
horizontal gradients in (4) using a level or “z” coordinate system, while the
remaining terms are evaluated in a stretched -coordinate system. However,
alternative methods of computing the baroclinic pressure gradient term (5) are the
subject of this article and are discussed in detail below.
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Experimental Methods
Because of the problems illustrated in Figure 1, our initial work has focused

on analysis of the baroclinic pressure gradient (BPG) term. The literature indicates
that the two most common coordinate systems are the sigma (i.e. terrain-following)
and z-level (i.e. fixed-depth) [1]. In our study, these coordinate systems are used to
define four different methods for calculating the BPG; the methods are summarized
in Figure 2 and Table 1. Each coordinate system offers several advantages and

disadvantages, both from a numerical implementation perspective and from an
accuracy perspective. In particular, z-coordinate systems are good at resolving
horizontal gradients, but the “stair-step” bottom slope representation causes
inaccuracies in bed stress and advection calculations near the bed, which can lead
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Figure 2. Schematic of the four
methods utilized in
calculating the BPG
term in the momentum
balance for the cross-
section shown to the
right: a) pure sigma, b)
hybrid [24], c)
QUODDY [22], and
d) ADCIRC-3D [18]
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to artificial cross diffusion. On the other hand, the -coordinate system can follow
the bottom topography, but can lead to large truncation errors when computing
horizontal gradients around the pycnocline [1]. Hence the appearance of hybrid
methods that take advantage of each method’s strengths. To isolate the impact of the
BPG on the resulting velocity field, we import the gradients calculated by any of the
four methods into the 3D ADCIRC code, which then computes the velocity field,
thus providing a consistent basis for comparing each BPG method (see notes in
Table 1). With any vertical grid, one must also consider the distribution of nodes.
For the initial study, we are using a uniform distribution; later work will consider
sinusoidal and others suggested by the literature. 

The domain used for this initial study is an idealized basin, which provides
a good check on our numerical algorithms since, for simple density fields, it has an
analytic solution. The idealized basin is a 48 km (east-west) x 16 km (north-south)
rectangular domain with varying levels of horizontal and vertical resolution.
Initially, the horizontal resolution is set at 1000 m, but the vertical resolution can
vary. Two bathymetry profiles are considered: 1) a constant 10m or 100m depth
(“flat bottom”) and 2) a linear variation from 10m at the shallow end to 100m at the

 

Table 1.  Description of vertical coordinate systems used for calculating the baroclinic 
pressure gradient. 

Coordinate 
Systems Specifics

Sigma Terrain following. See Figure 2a.

Sigma/z-level A hybrid sigma/z-level coordinate system that switches methods 
based on the vertical depth. The sigma coordinates reside on the upper 
section while the z-level coordinates make up the lower section. See 
Figure 2b. This method is currently being used in NCOM (Naval 
Coastal Ocean Model) [24].

Predetermined 
level surfaces

Used in the QUODDY FE model to compute the BPG term where the 
predetermined level surfaces often coincide with depths at which the 
modeler knows the structure of the density field. In this case, there are 
a uniform number of vertical nodes under every horizontal nodes, 
which are terrain and free surface following [22]. See figure 2c. 

Sigma/z-level Used in the 3D ADCIRC model. The BPG terms are calculated along 
level coordinates. See Figure 2d. For other terms in the momentum 
equation, a generalized stretched vertical coordinate is used where the 
z-level coordinates are transformed to variable sigma coordinates 
(where σb=-1 and σa=1). This represents a stretched sigma coordinate 
method, but it allows for the nodes to be distributed vertically in any 
manner [18]. 

σ
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deep end (“sloped bottom” with a constant slope of approximately 0.2%). Boundary
conditions on all sides of the ideal basin are land boundaries with no normal flow
as natural boundary conditions, but free tangential slip is allowed. Other invariant
conditions of the simulation are as follows (exceptions will be noted): horizontal
eddy viscosity mixing processes are neglected (negligible horizontal velocity
gradients), cold start, 1-day simulation time, no north-south variations in the density
field,  in the GWC solution set to 0.01/sec, linear slip bottom condition, and the
nonlinear terms turned off except for the bottom friction. 

BPG Tests
The density fields for the idealized basin are summarized in Table 2. Density

fields were chosen to facilitate the computation of an analytic solution or to be
representative of field gradients; they can be grouped into 3 categories: 1) The
density only varies in the horizontal (either linearly or quadratically), which lend
themselves to a non-zero analytic solution for the baroclinic pressure gradient; 2)
The density varies in the vertical direction only (discussed in Table 2, #4 and #5),
which has an analytic baroclinic pressure gradient of zero; and 3) A density field
that varies both in the vertical and horizontal directions. 

In all cases, there is no north-south density variation and the reference
density, , is constant, so equation (5) simplifies to

(6)

For the first flat bottom case (Table 2, #1) and the first two sloped bottom cases
(Table2, #1 and #2), the density does not vary with depth either so (6) further
simplifies to 

(7)

where  is a known function of  and where we have assumed that the elevation
set-up is small and can be neglected in the integral (i.e.,  is set to zero). Numerical
tests verified this assumption. For the second flat bottom case, the density field over
the vertical is not constant, but it does vary as a known function so that the analytic
BPG can be calculated from (6). Such is not the case for the third sloped bottom
case, whose density field is shown in Figure 3. For this case, we used an over-
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resolved grid in the vertical (101 nodes or levels) to establish the true solution.  

Velocity Tests
As discussed earlier, BPG results from any of the methods are fed into the

3D ADCIRC model to compute the 3D velocity field. Table 3 summarizes the

Table 2.  Density fields used to test BPG calculationsa. 

a. All density units in kg/m3

Flat Bottom Sloped Bottom

1) Linear variation from 1000 (east) to 1036 
(west). Constant over 10m depth. 

1) Linear variation from 1000 (east) to 1036 
(west). Constant over depth.

2) Quadratic increase from 1000 (east) to 
1036 (west). Constant over depth. 

2) Quadratic increase from 1000 (east) to 
1036 (west). Constant over depth. 

3) Linear variation from 1000 at the surface 
(east) to 1036 at the surface (west). Quadratic 
decrease from surface value with depth. See 
Figure 3.

4) Stratified case where the density above 
50m is 1027 and below the density is 1034.

5) Field-representative density variation in 
the vertical with a well-mixed warm surface 
layer underlain by logarithmic increase to 
deeper colder water (see Fig. 3); no variation 
in the horizontal. Developed from [28].
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Figure 3. Vertical profiles of the #3 (a) and #5 (b) density fields described in
the right column of Table 2. Darker color in the left panel
represents lower density. 
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vertical experiments and parameter studies with this code for the idealized basin. 

For the conditions of the first experiment for the flat bottom domain,
Luettich [19] derived an analytic solution for the surface elevation and east-west
(“along-channel”) velocity, as given below

(8)

(9)

where k is the slip condition, h is the bathymetry, z is the depth and Ez is the vertical
eddy viscosity.

Results
BPG Tests

BPG results for all four methods matched the analytic solution for the flat
bottom experiments of Table 2. 

Table 3.  Velocity experiments and parameter studies.

Flat Bottoma

a. For the experiments in this column, only the ADCIRC method of calculating the BPG
was used. The density profile was that described in the first row in Table 2. 

Sloped Bottomb

b. For all the experiments in this column, the hybrid BPG was not used because of an un-
resolved interface problem. For experiments 1 and 2, the density field was that de-
scribed in the first row in Table 2; for experiment 3, the density field was that described
in the second row of Table 2

1) Constant vertical eddy viscosity, 10m and 
100m depth, linear slip bottom boundary con-
dition. 

1) Constant vertical eddy viscosity, linear slip 
bottom boundary condition.

2) Impact of ramp function when using cold 
starts. 

2) Linear vs. quadratic slip bottom boundary 
condition

3) Linear slip vs. quadratic slip vs. no slip for 
the bottom boundary condition. 

3) Constant vertical eddy viscosity, linear slip 
bottom boundary condition; more complex 
density field. 

4) Impact of “G,” the numerical parameter in 
the GWC equation (conditions as in row 1 
above). 
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For the sloped bottom experiments of Table 2, representative results for the
first experiment are shown in Figure 4 at two different vertical profiles (two

different locations in the domain). As can be seen, all four methods nearly match
the analytic solution except for a slight tailing of the BPG near the bottom of the
100 m end of the domain for the hybrid and QUODDY methods.

Figure 5 shows the BPG results for the second sloped bottom experiment at

two different east-west locations. Again, all four methods produce acceptable
results, but ADCIRC has a slight tail near the 35 m bottom. Figure 6 shows how the
BPG compares to the analytic solution as one takes an east-west slice through the

Figure 4. BPG vs. depth at two locations along the east-west axis; one near 35m
depth (a) and one near 100 m depth (b). (dot dash = hybrid, long dash =
quoddy, short dash = sigma, medium dash = adcirc, solid = analytic)
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Figure 5. BPG vs. depth at two locations along the east-west axis; one near 35m
depth (a) and one near 100 m depth (b). (dot dash = hybrid, long
dash = quoddy, short dash = sigma, medium dash = adcirc, solid =
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domain at a constant 10 m depth. Again, results from all four methods are good. 

Figures 7 and 8 show the BPG results for the more complex density field
(third sloped bottom experiment) where the “true” solution was obtained from an
over-resolved grid (101 levels). Figure 7 illustrates the BPG vs. depth near the

100m end of the domain; Figure 8 illustrates the east-west BPG value along the 10m
depth contour. Not shown on the figure is the hybrid scheme because it produced
unrealistic results, a curious result since the method worked well in the other test

Figure 6. BPG vs. distance along the east-west direction at a depth of
10m. (dot dash = hybrid, long dash = quoddy, short dash =
sigma, medium dash = adcirc, solid = analytic)

0 10000 20000 30000 40000
Distance, m

0.000025

0.00005

0.000075

0.0001

0.000125

0.00015

GPB

Figure 7. BPG vs. depth near the 100m (west) end of the domain. (dot
dash = hybrid, long dash = quoddy, short dash = sigma,
medium dash = adcirc, solid = “over-resolved”)
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cases. The issue clearly needs further investigation.

For both the stratified (Table 2, #4) and the field (Table 2, #5) density
profile, the analytic solution is zero BPG (because the horizontal gradient of density
is zero). However, all three methods (hybrid not tested) produced similar results that
showed zero or non-zero BPG’s over much of the domain, but introduced a small
fictional gradient over part of the domain. It appears that the fictional BPGs are
independent of vertical resolution. Clearly, the numerical interpolation of the
density field is smearing sharp interfaces so that the horizontal density gradient is
not zero. We are investigating solutions to this problem but have no
recommendations at this time. Based on Walters and Foreman’s [32] work,
additional horizontal resolution may help resolve this problem; such studies are part
of our research outline. 

Velocity Tests
Adequacy of the velocity model was tested by comparing the analytic

results for the flat bottom domain, test case 1 (given by equations (8) and (9)) with
the numerical results for 21 nodes. Figure 9 illustrates the results for both the 10m
and 100m depths. As can be seen, the results match exactly. We do note that for this

Figure 8. BPG vs. distance along the east-west direction at a depth
of 10m. (long dash = quoddy, short dash = sigma,
medium dash = adcirc, solid = “over-resolved”)
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simplified (and physically unrealistic) density field, the numerical and analytic

results do not match up for depths greater than a couple of hundred meters. Our
hypothesis is that the assumptions behind the simplified solution (e.g., no advective
acceleration) breakdown because the velocities are on the order of 1000’s of meters
per second. 

During the second study for the flat bottom problem, we found that the time
to reach steady-state from a cold start was significantly reduced through the use of
a ramp function (hyperbolic tangent) to slowly spin up the problem over a period of
hours (e.g., a 0.25 day ramp for a 1 day simulation). 

Results from the fourth flat bottom experiment are inconclusive because
different east-west locations in the domain show different trends. In general,
however, the no slip condition produces unrealistic results, while the linear slip
produces the most qualitatively realistic results. 

Our past work with the ADCIRC model [14] has shown that the “G”
parameter has a significant impact of overall solution results. In particular, too low
of a G-value leads to mass balance errors and errors in the generation of nonlinear
constituents, while too high of a value leads to spurious 2  noise. For the
conditions noted in the fifth line of Table 3, we varied G by several orders of
magnitude above and below the base value. For the conditions specified, no impact
on the vertical velocity profile was observed. 

With regard to the sloped bottom problem, we note that for the first
experiment of Table 3, results were qualitatively similar to the flat bottom case with
the exception that the along-channel velocities were about 50% higher. This can be
expected because of the deeper bathymetries (pressure due to density differences is
accentuated). 

Figure 9. Comparison of the analytical (solid) and numerical (dots) velocity vs.
depth for the 10m and 100m flat bottom problem (case 1 in Table 3). 
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The results of the second sloped bottom experiment were inconclusive (they
either did not converge to a steady solution or varied unrealistically across the
domain). 

In the third sloped experiment of Table 3, one of the most notable
observations is that the small differences in BPG (see Figures 7 and 8) manifested
themselves as much larger differences in the vertical velocity profile. 

Observations/Future Work
Results from this preliminary study suggest the following. Many of these

results are expected or obvious and confirm what others have found in their studies;
the ground work for the next, and more complex, round of testing is in place. 

• A density gradient that increases linearly from 1036 kg/m3 to 1000 kg/m3 at the
ends of the domain produces unrealistic along-channel velocities for depths
greater than 100 m. 

• Vertical refinement from 21 to 101 levels showed little to no improvement for
the density gradients used in the test cases. However, we anticipate that this will
become more of an issue when we simultaneously refine the horizontal grid and
the density varies more dramatically, both vertically and horizontally, e.g., high
density wedge on a slope. 

• Interfaces can be smeared by numerical interpolation, which introduces small,
fictional baroclinic pressure gradients.

• Use of a ramp function generates fewer oscillations at start-up. 
• For the simplified test cases with the ideal basin, the complexity of the

combined topography and density field is not great enough to trigger the
instabilities that were observed in the Arabian Gulf simulation. 
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