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ABSTRACT 

Finite element solution of the shallow water wave equations has found increasing use by researchers 
and practitioners in the modeling of oceans and coastal areas. Wave equation models, most of which 
use equal-order, C0 interpolants for both the velocity and the surface elevation, successfully elimi-
nate spurious oscillation modes without resorting to artificial or numerical damping. An important 
question for both primitive equation and wave equation models is the interpretation of boundary 
conditions. Analysis of the characteristics of the governing equations shows that a single condition 
at each boundary is sufficient. Yet there is not a consensus in the literature as to what that boundary 
condition must be or how it should be implemented in a finite element code. Traditionally (partly 
because of limited data) surface elevation is specified at open ocean boundaries while the normal 
flux is specified as zero at land boundaries. In most finite element wave equation models, both of 
these boundary conditions are implemented as essential conditions. Our recent work focuses on 
alternate ways to numerically implement normal flow boundary conditions with an eye toward 
improving the mass-conserving properties of wave equation models. In particular, we have found 
that treating normal fluxes as natural conditions with the flux interpreted as external to the compu-
tational domain results in a mass conservative scheme for all parameter values. Use of generalized 
functions in the finite element formulation shows this is a natural interpretation. A series of two-
dimensional experiments demonstrates that this interpretation also improves the accuracy of prim-
itive equation models by eliminating some of the spurious oscillation modes. 

BACKGROUND

Shallow water equations are obtained by vertically averaging the microscopic mass and momentum 
balances over the depth of the water column. Early finite element solutions of the shallow water 
equations were often plagued by spurious oscillations. Various methods were introduced to elimi-
nate the oscillations but all included some type of artificial damping. Lynch and Gray [1] and Gray 
[2] present the wave continuity equation as a means to successfully suppress spurious oscillations 
without resorting to numerical or artificial damping of the solution. Since the inception of the wave 
continuity formulation in 1979, the original algorithm has been modified in a number of substantial 
ways: a numerical parameter was introduced to provide a more general means of weighting the 
primitive continuity equations [3]; viscous dissipation terms were incorporated [4, 5]; and three-
dimensional simulations were realized by resolving the velocity profile in the vertical [6, 7]. The 
resulting algorithm has been extensively tested using analytical solutions and field data and is 
currently being used to model the hydrodynamic behavior of coastal and oceanic areas [8-10]. 



In the course of some of the applications, it was discovered that when nonlinear components 
of the solution are significant, the wave continuity equation in its original form does not conserve 
mass. Two methods of mitigating the errors are presented in Kolar et al. [11]. In the first, it is shown 
that if , the numerical parameter in the generalized wave continuity equation, is increased so that 
its value is one or two orders of magnitude larger than the bottom friction, then mass conservation 
is greatly improved. However, an upper bound on  exists above which the solution becomes too 
primitive and spurious oscillations appear in the solution. Dispersion analysis can be used as a tool 
to a priori predict the maximum value of . The second mitigation technique reformulates the 
convective term in the generalized wave continuity equation so that a consistency exists between 
the momentum and continuity equations (e.g., both equations cast the advective terms in non-
conservative form). If both mitigating measures are used in conjunction, then global mass balance 
errors are eliminated while errors in local regions (even individual elements) are virtually nonex-
istent except for regions near the open boundaries. One and two-dimensional applications demon-
strate the effectiveness of the procedure. However, the persistence of errors near the open 
boundaries and absence of errors near land boundaries, has led to this study of the effect of 
boundary conditions on mass conservation and solution accuracy. 

CONSERVATION EQUATIONS

Primitive forms of the balance laws are obtained by vertical averaging of the microscopic balance 
laws. Using operator notation, we present the primitive form of conservation of mass (continuity 
equation) as

(1)

The conservative form of conservation of momentum is given by

(2)

and the non-conservative form of conservation of momentum is given by

(3a)

Substituting (1) and (2) into (3a) gives

(3b)

In operator form, the generalized wave continuity (GWC) equation is 

(4a)

Substituting (1) and (2) into (4a) gives
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(4b)

The wave continuity equation, as it originally appeared in Lynch and Gray [1], is obtained by setting 
. Note that the primitive continuity equation can be viewed as a limiting form of the gener-

alized wave continuity equation by letting . 

DISCRETIZATION

Equations (1), (2), (3b), and (4b) are discretized in space using a standard Galerkin finite element 
approximation with linear elements. Implicit time discretization of  and WG uses a three time level 
approximation centered at . Time discretization for  and  uses a lumped two time level 
approximation centered at ; the discrete equations are linearized by formulating the advec-
tive terms explicitly. Exact quadrature rules are employed. The resulting discretized equations can 
be found in [6]. A sequential solution procedure is adopted where the continuity equation ((1) or 
(4b)) is used to solve for elevations and the momentum equation ((2) or (3b)) is used to solve for 
the velocity field. 

BOUNDARY CONDITIONS

The governing conservation equations represent a coupled hyperbolic system of partial differential 
equations that describe the propagation of long water waves in shallow water. As such, character-
istic theory is an appropriate tool to study proper specification of boundary conditions. In particular, 
for the primitive conservation equations, it has been shown that one condition on each physical 
boundary is required (in addition to initial conditions for the “time boundary”). Drolet and Gray 
[12] extend the analysis of characteristic planes to the wave continuity equation and determined that 
a single boundary condition is still sufficient.

Mathematically, the conditions are specified as one of three types: Dirichlet (Type I) in 
which the value of the dependent variable (elevation or flux) is specified, Neumann (Type II) in 
which the value of the flux is specified, and Robin (Type III) which is a linear combination of the 
first two. In shallow water modeling, these types describe the physical situations of known-eleva-
tion, known-flux, or stage-discharge relations, respectively (the latter are often referred to as radia-
tion boundary conditions). This article focuses on the first two types of conditions. In finite element 
vernacular, a Dirichlet condition means that the value of the dependent variable is known on the 
boundary; it is referred to as an essential condition. A specified-flux condition enters the right hand 
side vector in the set of discrete equations and is referred to as a natural boundary condition. 

For a single partial differential equation, such as Laplace’s equation or the diffusion equa-
tion, specified boundary conditions fall neatly into one of the above categories and implementation 
is unambiguous. Unfortunately, such is not the case for the coupled hyperbolic system at hand, for 
what may serve as an essential condition for the momentum equation may equally be interpreted as 
a natural condition for the continuity equation. This ambiguity has led to an inconsistent treatment 
of boundary conditions in the literature; to date, no consensus on the “best” way to implement the 
conditions exists. Complicating the matter is the fact that data often dictates what information is 
available at the boundary. For example, elevation data, either from global tidal models or from field 
measurements, is more reliable and more prevalent than is velocity data. The end result is that the 
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researcher is often faced with the task of choosing one interpretation over the other, which, 
frequently, is tantamount to choosing which boundary equation to discard. 

Lynch [13] seems to be the first to study the effect of boundary conditions on mass conser-
vation in the context of the wave continuity algorithm. Using the well-known properties of linear 
basis functions that the sum of the functions over all elements is equal to one and the sum of the 
gradient of the basis functions over all elements is zero, he demonstrates that all terms of the conti-
nuity equation must be retained in order to maintain global conservation of mass, regardless of the 
nature of the boundary data. He refers to this interpretation of the boundary conditions as mass 
conservative boundary conditions. However, several open issues remain. For example, it is not clear 
how momentum conservation is affected by this interpretation - an equally-important consideration.

Accordingly, we undertook an extensive series of one-dimensional experiments to study 
various means of implementing mass conservative boundary conditions. A shallow one-dimen-
sional channel was used for the model problem so that significant nonlinear components are gener-
ated. Conditions for the problem are:

channel coordinates
channel depth 5 m
eddy viscosity 0.093 m2/sec

25 sec
2 km

boundary conditions

initial conditions cold start: 
bottom friction 0.0001 sec-1 (constant)

The -axis is defined positive to the right. The boundary conditions describe a channel with a land 
boundary at  km being forced by an M2 tide with 1 meter amplitude at  km. 

Mass conservation was checked globally and locally by comparing mass accumulation with 
cumulative net flux for the region of interest. Details of the algorithm are presented in [11]. For 
model comparison, a fine grid solution using primitive balance laws, which is mass conservative, 
was taken as the true solution. Note that for one-dimensional simulations with constant bathymetry, 
spurious oscillations do not plague the solution so that a primitive solution is satisfactory.

Conventional formulation of the boundary conditions implements all boundary information 
through the use of essential boundary conditions. That is, specified elevation results in a reduced 
matrix for the continuity equation and specified velocity results in a reduced matrix for the 
momentum solution with the corresponding finite element equation discarded. This interpretation 
leads to gross mass balance errors as demonstrated in Figure 1. For perfect mass balance, the two 
curves should overlay one another. (The mitigating procedures discussed earlier are not imple-
mented here so as to isolate the effect of boundary conditions.) 

Results of the numerical experiments show that the key to using mass conservative 
boundary conditions with C0 basis functions is interpretation. Specifically, state variables that 
appear in boundary integrals must be interpreted as external to the domain. To fix ideas, consider 
the finite element formulation of the primitive equations((1) and (3b)) for the one-dimensional 
model problem where Green’s Theorem has been applied to the flux term in (1). The weak form is 
given by
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(5)

Proper interpretation requires that the boundary flux term, , be viewed as external to the 
domain, i.e., an unknown quantity. Hence the designation on the limits of integration. In this 
way, the number of equations plus boundary conditions is equal to the number of unknowns so that 
all information is used; no equations are discarded. Thus, at the left boundary where  is specified, 
elevation is known so that (5) is solved for external flux. The momentum equation is then used to 
solve for velocity at the left boundary, . At the right boundary, the flux is known so it enters the 
finite element formulation given in (5) naturally, and the equation is solved for the unknown eleva-
tion. The momentum equation is then used to solve for the unknown velocity at the right boundary, 

. Note that such an interpretation allows for a discontinuity in velocity at the boundary.

When this external flux interpretation was applied to the GWC algorithm, simulation of the 
model problem results in no global mass balance error as shown in Figure 2. A large number of 
additional one-dimensional experiments, some looking at mixed formulations, were conducted to 
test the hypothesis. In one particularly interesting experiment, Green’s Theorem was applied to the 
finite amplitude term, , in the momentum equation. Consistent with the external flux interpre-
tation, this boundary term had to be interpreted as external to the domain in order to realize stable, 
accurate, mass conservative results. Alternative interpretations (for example, treating specified flux 
as both essential in the momentum balance and natural in the continuity equation) that were tested 
led to unstable algorithms. 

Additional evidence to support this interpretation of boundary terms comes from two 
sources. First, Westerink et al. [14] conducted a number of two-dimensional numerical experiments 

Figure 1 Global mass balance check of the GWC formulation ( ) for the 
model problem, conventional interpretation of boundary conditions.
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on a fictitious harbor with a known analytical solution. Both primitive and GWC algorithms were 
tested. One of the conclusions from the paper is that when known boundary fluxes are treated as 
external to the domain and implemented as natural conditions in the continuity equation, then the 
accuracy of the solution improves. In particular,  oscillations are damped. Experimental results 
were supported with dispersion analyses of both interior and boundary equations. Second, Gray and 
Celia [15] use generalized functions to facilitate finite element formulation of Laplace’s equation. 
With this unique approach, it becomes clear that the boundary term resulting from application of 
Green’s Theorem is indeed external to the computational domain. The method can also be applied 
to the coupled hyperbolic system of balance laws considered in this article; an outline of the essen-
tial steps in the analysis is given below. 

To clarify the presentation, focus on the linearized, steady-state, primitive continuity equa-
tion with constant bathymetry. Under these assumptions, equation (1) simplifies to

(6)

Discretize all space, , into triangular elements (element shape is arbitrary). Approximate  with 
 (summation implied) where  is a piecewise polynomial approximation of  inside the 

domain of interest ( ),  is a generalized Heaviside step function that has a value of one in 
element  and zero outside, and the summation is over all elements in . Outside of , the 
choice of the approximating function for  is arbitrary; a reasonable choice is to select  so that 
it satisfies the governing differential equation exactly. 

Obtain the finite element approximation by weighting (6) with a set of polynomial 
weighting functions, , which are defined to be equal to 1 at node  and zero at all other nodes, 
and integrating the result over the domain

Figure 2 Global mass balance check of the GWC formulation ( ) for the 
model problem, external flux interpretation of boundary conditions.
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(7)

Next expand the spatial derivative in (7) and use properties of the step function to simplify the 
resulting terms. These properties are that the sum of  over all elements is one and that the gradient 
of  is a generalized Dirac function whose integral relations are similar to the familiar one-dimen-
sional Dirac [16]. Thus, integrals involving  are converted to integrals over the boundary of the 
element where the discontinuity in  occurs. Now, if  is defined to be all elements that have node 

 in common, then (7) becomes

(8)

where  is a unit normal pointing out from element . 

Consider the case where  is on the boundary of the domain of interest, . (For the case of 
 on the interior of the domain, (8) reduces to a familiar finite element approximation.) Define 

elements  to be those elements of  that are inside  and elements  those outside of . Then, 
it can be shown that (8) simplifies to 

(9)

In the second term,  is external to the domain  so its value can be chosen to produce the best 
solution in . An obvious choice is to select  such that  on land boundaries and 

 is equal to the normal flux on open boundaries. Clearly in this formulation,  is inter-
preted as external to the computational domain. 

SUMMARY

Shallow water models based on a finite element solution of the wave continuity equation have 
evolved as powerful tools for simulating the hydrodynamic behavior of coastal and oceanic waters. 
Experiments and analyses show that proper interpretation of boundary conditions is needed to 
improve the accuracy and the mass-conserving properties of the algorithm. In particular, boundary 
terms that result from the application of Green’s Theorem to the weighted residual form of the 
governing equations should be interpreted as external to the computational domain. This interpre-
tation can be viewed as the finite element counterpart of the use of imaginary nodes (nodes outside 
the boundary) in finite difference algorithms.
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