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Abstract 

Finite element solution of the shallow water wave equations has found 
increasing use by researchers and practitioners in the modeling of oceans and 
coastal areas. Wave equation models successfully eliminate spurious oscillation 
modes without resorting to artificial or numerical damping. Since its introduction 
in 1979, the wave equation algorithm has been modified in a number of substan-
tial ways. Three changes were introduced to improve the accuracy of the algo-
rithm, especially with respect to mass balance errors and errors in the generation 
of nonlinear constituents: 1) the convective terms in the wave equation were 
reformulated so as to have the same form as the advective terms in the 
momentum equation; 2) the primitive continuity equation was weighted with a 
numerical parameter whose magnitude is larger than the bottom friction; 3) 
normal fluxes on the boundary were treated as natural conditions with the flux 
interpreted as external to the computational domain. In previous work, we have 
provided a theoretical basis for the second and the third modification. However, 
the first was developed in a purely heuristic manner. In the present work, we use 
truncation error analysis to provide a theoretical understanding of how this algo-
rithmic change produces such a dramatic improvement in computed results. It is 
shown that when the form of the advective terms in the wave continuity and 
momentum equation is the same, global truncation error is reduced by 78% for 
the model problem. Truncation error analysis, as implemented herein, is a very 
general and powerful tool that will lead to further insights and improvements of 
the wave continuity algorithm. 



Background

Shallow water equations, based on conservation of mass and momentum, 
describe the propagation of long water waves in oceans, estuaries, and impound-
ments. Early attempts to solve the equations using the finite element method 
were frequently plagued by spurious oscillations superimposed on the true solu-
tion. Lynch and Gray1 and Gray2 introduced the wave continuity equation in 
1979 as a means to successfully suppress the numerical noise without resorting 
to numerical or artificial damping of the solution. Since the inception of the 
formulation, the original algorithm has been modified in a number of substantial 
ways: 1) a numerical parameter was introduced to provide a more general means 
of weighting the primitive continuity equation3; 2) viscous dissipation terms 
were incorporated4,5; 3) three-dimensional simulations were realized by 
resolving the velocity profile in the vertical6,7; 4) interpolation of the advective 
(also called convective) terms was modified6; 5) algorithms were optimized for 
scalar and vector computers6; and 6), most recently, the method of implementing 
boundary conditions was altered8. The resulting algorithm has been extensively 
tested using analytical solutions and field data and is being used to model the 
hydrodynamic behavior of coastal and oceanic areas9-11. 

Modifications numbered 1, 4, and 6 were driven by the need to improve 
mass conservation in highly nonlinear applications, which, we have found, 
serves as a surrogate variable for errors in the generation of nonlinear constitu-
ents and phasing errors. Of these, numbers 1 and 6 have a sound theoretical basis. 
In Kolar et al.12, dispersion analysis is used to study what effect  ratios 
greater than one (where  is the numerical parameter in the wave continuity 
equation and  is the bottom friction) have on the solution. A new method of 
implementing boundary conditions (modification 6) was derived from first prin-
ciples using generalized functions in the finite element formulation8. In reference 
12, we provide empirical evidence that reformulating the convective terms in the 
generalized wave continuity equation so that a consistency exists between the 
momentum and continuity equations (modification 4) greatly improves mass 
conservation. Herein, we use truncation error analysis to provide a theoretical 
understanding of the advective term modification. However, the analysis is not 
restricted to just analyzing the behavior of the advective terms. Rather, it is a very 
powerful analysis tool that allows us to look inside the wave continuity algorithm 
with the intent to better understand its numerical characteristics. For example, in 
Hagen et al.13, truncation error analysis is used to optimally place nodes in the 
generation of finite element meshes. Ultimately, results from a complete study of 
truncation error will lead to improved accuracy, stability, and efficiency of the 
wave equation algorithm.

Conservation Equations

Primitive forms of the balance laws are obtained by vertical averaging of 
the microscopic balance laws. In the interest of brevity, the equations will be 
presented using operator notation; the full equations can be found in a variety of 
sources, including previous CMWR conference proceedings6,12,14,15. Let  repre-
sent the primitive continuity equation,  the non-conservative form of the 
momentum equation (NCM), and  the conservative form of the momentum 
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equation. The generalized wave continuity equation (GWC) is obtained from

(1)

where  is a numerical parameter. The wave continuity equation, as it originally 
appeared in Lynch and Gray1, is obtained by setting  where  is the 
bottom friction parameter. Note that the primitive continuity equation can be 
viewed as a limiting form of the GWC equation by letting . 

Discrete Equations

Discrete equations are obtained by interpolating G and  with  linear 
finite elements. Implicit time discretization of WG uses a three time level approx-
imation centered at . Time discretization of  uses a lumped two time level 
approximation centered at ; the equations are linearized by formulating 
the advective terms explicitly. Exact quadrature rules are employed. A time-split-
ting solution procedure is adopted wherein G is first solved for nodal elevations 
and  is then solved for the velocity field. The resulting discrete equations can 
be found in Luettich et al.6 

Truncation Error Analysis

Procedure

Truncation error analysis is based on Taylor’s theorem, which allows all 
dependent variables to be evaluated at a common point, essentially the calculus 
equivalent of the arithmetic operation of finding a common denominator. 
Taylor’s theorem in one dimension states that for any smooth function, i.e., a 
continuous function whose first  derivatives are continuous:

(2)

where  is fixed point in the neighborhood of  at which the derivatives in (2)
are evaluated, and  is the remainder term16. For the index notation encoun-
tered with discrete equations, a more workable form of Taylor’s theorem is 

(3)

where all derivatives on the right hand side of (2) are evaluated at . Multi-
dimensional forms of (2) follow analogously. 

Truncation error is found by first substituting in the Taylor series expansion 
for the dependent variables in the discrete equations so that all functions are eval-
uated at a common node, typically taken as  in two dimensions. The result 
is then subtracted from the continuous equation to generate the truncation error. 
If  represents the continuous differential equation and  the discrete approxi-
mation, then the truncation error ( ) is defined as 

(4)
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For practical reasons,  analysis was historically restricted to linear 
problems in one or two dimensions. Three-dimensional and nonlinear problems 
were seldom analyzed because the resulting expansions become unwieldy and 
the manipulations prone to errors, especially when multiplying high order Taylor 
series in nonlinear cases. If attempted at all, they were typically limited to the 
lowest order terms on a uniform grid. However, with the advent of symbolic 
manipulators, even the most complex problems can be scrutinized using trunca-
tion error analysis, as long as the discrete equations can be written down explic-
itly. Moreover, nonuniform grids and expansions of any order can be studied. 
(We should qualify this as reasonable order since we still have to deal with the 
limits of computer memory, although this is becoming less of a handicap.) In the 
present study, all analyses were carried out to sixth order terms of the Taylor 
series expansion using Mathematica®.

Qualitative evaluations of the error expressions can give information about 
consistency and accuracy. However, quantitative analysis is precluded because 
the sign and magnitude of the derivative terms in (4) are unknown. Consequently, 
to quantify the truncation error, we set up a model problem and generated a fine 
grid solution with known convergence properties8. Output from the fine grid 
solution (elevation and velocity field) is fed into central difference formulas to 
approximate the derivatives in (4) at all interior points of the domain. From that 
point, parameter values can be defined and the truncation error quantified.

Truncation error analysis, as described above, is inherently an analysis of 
local error around a grid point. However, global error can be obtained by moving 
the evaluation point  around the domain of interest. For this work, global 
truncation error is defined as the average of the absolute value of the local trun-
cation error as the analysis point is moved around the mesh, i.e.,

(5)

where  represents the local truncation error computed from (4) and  and 
 represent the number of mesh points in the  directions, respectively. 

Model Problem

A shallow one-dimensional channel was used for the model problem so 
that significant nonlinear components are generated; a simulation scenario that 
mimics the errors seen in two-dimensional models of shallow coastal areas. 
Conditions for the problem are:

channel coordinates
channel depth 5 m
eddy viscosity 0.000 m2/sec

4 sec
0.5 km

boundary conditions

initial conditions cold start: 
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bottom friction 0.0001 sec-1 (constant)
Courant number 0.056

626

where in the last line,  is the wavelength of the M2 wave. Note the fine 
temporal and spatial resolution. The -axis is defined as positive to the east. The 
boundary conditions describe a channel with a land boundary at  km 
being forced by an M2 tide with 1 meter amplitude at  km. The simulation 
is spun up from a cold start and allowed to run for 24 tidal cycles; results from 
the last tidal cycle are saved for input to the truncation error equations. 

A number of numerical parameters exist in the code; they are summarized 
below along with their default value. Physical parameters such as  and  were 
not adjusted during the truncation error study. 

0.001 sec-1 relative weight of ; see equation (1)
0.35 amount  term in GWC weighted at , 
0.30 amount  term in GWC weighted at 

flag_gwc 0 determines form of GWC advective term; see below
flag_ncm 0 determines form of NCM advective term; see below

0.5 amount viscous term in NCM weighted at 
0.5 amount viscous term in NCM weighted at 
0 lumping parameter for mass matrices; 0 is consistent

mass matrix, 1 is fully-lumped mass matrix

Note that  and . 

Results - Qualitative

Expressions for the leading error terms of the full nonlinear, interior equa-
tions of G and  are quite lengthy and cannot be shown here. (They are avail-
able from the first author upon request.) Discrete equations at the boundary are 
of a different form and are not included in this analysis. In the expansions, we 
assume a constant time step, , but allow for variable grid spacing. 

Order of Accuracy
Analysis of the symbolic  expressions shows that G is first order accu-

rate in space if , and it is second order accurate if . If 
, then G is first order accurate in time; if , then G

is second order accurate in time. Similarly,  is formally first order accurate in 
time, and first order in space unless  in which case it is second 
order accurate. 

Consistency
If we take the limit of the symbolic error expressions as the space/time 

mesh is reduced to zero, then  regardless of parameter values. Thus, the 
algorithm is consistent with the differential equation. To the authors’ knowledge, 
this is the first time since the inception of the algorithm in 1979 that the full 
nonlinear GWC algorithm (based on the discretization scheme outlined earlier) 
has been proven to be consistent. 
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Results - Quantitative

Recall that for this presentation, we are primarily focusing on the behavior 
of the truncation error with respect to the advective terms. In the solution algo-
rithm, a flag (a numerical parameter) determines the form of the advective terms 
in G and . If the flag is set to 1, then the advective term is in non-conservative 
form. If the flag is set to 0, then the advective term is in conservative form. Past 
numerical experiments12 have shown that the most accurate results, in terms of 
mass conservation and constituent error, are obtained when the flags for G and 

 have the same value, i.e., both 1 or both 0. Of course, the flag may take on 
fractional values, which is also analyzed using the truncation error program. 

Global Truncation Error
When the global truncation error formula (equation (5)) is applied to the 

model problem, we find that the truncation error is reduced by 78% when the 
advective term flag in G is changed from 0 (not the same as the flag in ) to 1 
(the same as the flag in ). The result is consistent with our empirical results in 
reference 12.

Local Truncation Error
Locally, we see the same reduction in truncation error as the flag for the 

advective term is changed from 0 to 1. Figure 1 displays the local truncation 
error, as defined by equation (4), versus time (  is held constant at 1830 m) for 
various values of the flag in G. As can be seen, for nearly all times the trunca-
tion error decreases as the flag changes from 0 to 1. The two regions where there 
is virtually no change in truncation error occur at slack tide. At slack tide the 
velocity, and hence the advective term, is zero; since flag_gwc only affects the 
advective terms,  is independent of the flag’s value at slack tide. 

Not shown is the surface plot of the entire truncation error versus space and 
time, but analysis of the plot reveals that most of the  reduction occurs near 
the open ocean boundary ( ), the region of maximum error in the simula-
tion. Little or no reduction takes place near the land boundary. 

In summary, looking at the quantitative  for the GWC equation, which 
is of primary concern when trying to improve mass conservation, we find that the 
truncation error is minimum when the flag for G is the same as the flag for . 
Before this analysis, we hypothesized that by having the advective terms of the 
same form, one would see some cancelling of truncation error terms between the 
continuity and momentum equation. However, analysis of both the symbolic  
expressions and the numerical values found from (5) shows that the truncation 
error associated with the  equation behaves somewhat independently of the 

G error. Moreover, there is an order of magnitude difference between the error 
terms. Thus we are led to believe that the improved accuracy is not caused by 
self-cancelling errors; rather, it is the outcome of an improved approximation of 
elevation and velocity by the respective equations when the flags are set to the 
same value. 

Summary

Truncation error analysis, when done in conjunction with symbolic manip-
ulators, allows researchers to analyze algorithmic behavior of complex nonlinear 
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problems on variable grids. Herein, we use the method to analyze the behavior 
of the truncation error in the wave continuity algorithm as the form of the advec-
tive term is varied. Results confirm output from previous numerical experiments, 
viz, the truncation error is minimized when the form of the advective term 
between the GWC and NCM equations is the same (e.g., advective terms in both 
equations in conservative form). On-going truncation error and stability studies 
will lead to new insights and algorithmic improvements of shallow water models 
based on the wave continuity equations. 

Key Words: truncation error, shallow water models, wave continuity equation, 
finite elements, symbolic manipulators
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