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Abstract

Finite element solutions of the shallow water wave equations have found increasing 
use by researchers and practitioners in the modeling of oceans and coastal areas. 
Wave equation models successfully eliminate spurious oscillation modes without 
resorting to artificial or numerical damping. Typically, wave equation models inte-
grate the continuity equation with a three-time-level scheme centered at k and the 
momentum equation with a two-time-level scheme centered at k+1/2; nonlinear 
terms are evaluated explicitly. This allows for a computationally-efficient sequen-
tial solution procedure. However in highly nonlinear applications, the algorithm 
becomes unstable for high Courant numbers. In this work, we examine a predictor-
corrector algorithm to improve the stability constraint. Two advantages of the 
predictor-corrector scheme over the alternative of simultaneous integration of the 
full nonlinear equations are: 1) they can be easily implemented within the frame-
work of existing codes; and 2) they minimize the size of the matrices that must be 
stored and inverted. Results from an exhaustive series of one-dimensional experi-
ments show that, depending on the bathymetry, grid resolution, and iteration proce-
dure, we can see over a ten-fold increase in the size of the stable time step. 
Implementation of the most promising algorithm into the 2D/3D circulation model, 
Adcirc, is in progress. 



Background

Shallow water equations are based on the depth-averaged equations of 
motion subject to the assumption of a hydrostatic pressure distribution; they 
describe the propagation of long water waves in oceans, estuaries, and 
impoundments. Early finite element algorithms were plagued by spurious 
oscillations superimposed on the true solution. The oscillations were 
damped with either artificially high viscous coefficients or with a dissipative 
time marching scheme1. Lynch and Gray2 introduced the wave continuity 
equation in 1979 as a means to successfully suppress the noise without 
damping the true solution. Since its inception, the wave continuity algo-
rithm has been modified in a number of substantial ways3-7 so that the 
resulting code (referred to herein as Adcirc8) can accurately model the 
three-dimensional hydrodynamic behavior of coastal and oceanic areas9-11. 

While the Adcirc model has proven to be a efficient and accurate 
simulator, in some highly nonlinear applications, the sequential solution 
procedure imposes a severe Courant number restriction on the allowable 
time step. For example, with the Western North Atlantic model9, the 
Courant number (as determined by the linear wave celerity) must be on the 
order of 0.5 in order for the simulation to remain stable. With highly advec-
tive flows, such as flow around barrier islands and constricted inlets, the 
stability constraint is even more extreme. One obvious solution would be to 
implement a fully-implicit, simultaneous solution of the nonlinear conti-
nuity and momentum equations. However, this strategy would be inconsis-
tent with the framework of the existing Adcirc code, and it would require 
storing and inverting larger matrices. Herein, we propose an alternative iter-
ative technique (predictor-corrector) that conforms to Adcirc’s sequential 
solution algorithm. It is tested extensively with a one-dimensional version 
of the code applied to a variety of problems. 

Conservation equations

The full equations can be found in a variety of sources8,12; in the interest of 
brevity, only the operator notation is given here. Let  represent the primi-
tive continuity equation,  the non-conservative form of the momentum 
equation (NCM), and  the conservative form of the momentum equa-
tion. The generalized wave continuity equation (GWC) is obtained from

(1)

where  is a numerical parameter. The wave continuity equation, as it orig-
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inally appeared in Lynch and Gray2, is obtained by setting  where  
represents the bottom friction. Note that the primitive continuity equation 
can be viewed as a limiting form of the GWC equation by letting . 

Original solution algorithm

Semi-discrete equations are obtained by interpolating G and  with C0

linear finite elements (triangles). Implicit time discretization of WG uses a 
three-time-level approximation centered at . Time discretization of  
uses a lumped two-time-level approximation centered at . Equations 
are linearized by formulating the advective terms explicitly. Exact quadra-
ture rules are used. A time-splitting solution procedure is adopted wherein 

G is first solved for nodal elevations and then  is solved for the velocity 
field. The resulting discrete equations can be found in Luettich et al.8 

Alternative time marching algorithm

The algorithm

The alternative algorithm uses the original time stepping procedure to 
predict the elevation and velocity field at the new time level. These 
predicted quantities are then used to update some or all of the nonlinear 
terms in the right-hand side load vector (recall that the nonlinear terms are 
evaluated explicitly), after which a corrected elevation and velocity field are 
obtained. The predictor-corrector loop can be repeated until convergence. 

Numerical experiments

To evaluate the relative effect of each of the nonlinear terms, an exhaustive 
set of one-dimensional experiments was conducted on a model problem. 
Table 1 gives the experimental matrix. Conditions for the model problem 
are: 1D channel, 50 km long reach, 5 meters deep, constant bottom friction 
of 10-4 sec-1, a  ratio of 10 (constant), eddy viscosity is zero, 50 
equally-sized elements, and forced with a 1 meter M2 tide at the ocean 
boundary and no normal flux at the opposite land boundary. The model 
problem was chosen because its shallow bathymetry and large amplitude 
forcing creates significant nonlinearities; it has been a very useful test 
problem in our previous analyses. While we recognize that positive 1D 
results are no guarantee for success in 2D, our experience has shown that if 
it does not work in 1D, it certainly will not work in 2D applications.
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Past work has shown that accuracy, and algorithm behavior in 
general, is very sensitive to the ratio of . For the set-up in Group 7 that 
produced the 121% change (Table 1, footnote 5), we explored its sensitivity 
to the value of G by varying it over several orders of magnitude. 

Another complete set of 1D experiments was conducted in order to 
assess the effects of variable grid spacing and variable bathymetry on the 

Table 1. Numerical stability experiments for the model problem.

Group #
Nonlinear Term 

Subject to Iterative 
Improvement1

1. NCM advective refers to the  term in the NCM equation. 
GWC advective refers to the  term in the GWC equation.
GWC finite amplitude refers to the  term in the GWC equation.
GWC flux times G refers to the  term in the GWC equation.
GWC flux times  refers to the  term in the GWC equation.

Parameter(s) 
Varied2

2. Centered at k means the term was weighted equally between k-1, k, k+1.
Centered at k+1/2 means the term was weighted equally between k, k+1.

Maximum 
Courant #3

3. Courant # was calculated as  where  and h is bathymetry. 

% Change 
from Base4

4. For a base run, the code is run with both advective terms in conservative form 
and no iterative improvement. 

1 NCM advective form of the term 
(cons./non-cons.); 
no iterative 
improvement

0.95 0.0%

2 GWC advective # iterations; center 
at k or k+1/2

1.02 7.4%

3 NCM advective # iterations; center 
at k or k+1/2

1.12 17.9%

4 GWC finite 
amplitude

# iterations; center 
at k or k+1/2

0.95 0.0%

5 GWC flux times G # iterations; center 
at k or k+1/2

1.51 55.8%

6 GWC flux times # iterations; center 
at k or k+1/2

0.95 0.0%

7 Permutations of 
Groups 2 through 6

center at k or k+1/2 2.14 121%5

5. Maximum realized by iterating on the GWC flux times G term centered at k and 
the NCM advective term centered at k+1/2, ie, a combination of Group 3 and 5. 
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stability. The domains are shown in Figure 1 and Figure 2; the former repre-
sents a quadratic-like change in bathymetry with varying rates of rise, while 

0 the latter represents a 
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Figure 1. Bathymetry for quadratic test problems.

Figure 2. Bathymetry for Western North Atlantic test 
problems.
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simplified cross-section 
of the Western North 
Atlantic extending from 
the East coast of the US 
to the deep ocean. For 
each, different levels of 
discretization were used 
(both constant and vari-
able node spacing), 
ranging from a 
minimum M2 resolution 
of 30 nodes per wave-
length to over 1000. In 
addition to evaluating 
the individual effects of 
each nonlinear term with 
central time weighting, a 
la Groups 2-6 in Table 1, 
we experimented with 
time weights that were 
not centered in an effort 
to find the maximum 
stable time step.
Results

Stability was defined as the maximum allowable time step, to the nearest 5 
seconds, that could be used without causing overflow errors. Table 1
summarizes key results for the first set of experiments. In the table, percent 
change refers to the increase in the time step as compared to the original 
solution algorithm. Note that since each iteration requires another matrix 
inversion, only iterations that show more than a 100% change per iteration 
are cost-effective. (This is a conservative estimate in that it assumes the 
entire load vector is re-evaluated each iteration, while in reality, only the 
nonlinear term(s) are affected.) 

As can be seen in the table, the form of the advective terms, the finite 
amplitude terms, and the flux times  term have absolutely no influence on 
the stability of the model problem. (However, it should be noted that they 
do have a significant effect on the overall accuracy of the code.) As Group 

τ



2 and 3 results show, iterative improvement using the advective terms offers 
some gain in stability, but the most influence of a single term is the GWC 
flux times G term (Group 5). For this model problem, we were able to over-
come the “break-even” point, ie, over 100% improvement, for the Group 7 
simulation that iterated upon the NCM advective term in conjunction with 
the GWC flux times G term. It is interesting to note that the combined effect 
is more than the sum of the improvements shown by the individual parts. In 
an effort to minimize computational costs, we did try iterating every other 
time step. Even considering the reduced cost, the gains were not as signifi-
cant so this alternative was not explored further. 

Concerning sensitivity to the numerical G parameter, we found that, 
for the conditions of the model problem (the constant depth channel), 
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Figure 3. Sensitivity of stability to the  ratio for
conditions of the model problem. 

G/τ
stability is maximum 
when the  ratio is on 
the order of 2 to 50, as 
shown in Figure 3. In a 
previous study12, we 
have shown that mass 
balance errors and errors 
in the generation of 
nonlinear constituents 
are minimized when the 
ratio is on the order of 1 
to 10. Thus, it appears 
that the increase in 

G/τ

 

y and without using so high 
stability can be made without sacrificing accurac
of a G value that spurious oscillations are introduced.

Full results from the second set of experiments on the other domains 
and other grid discretizations are not shown because of space limitations. In 
general, they confirm the results shown in Table 1, viz, when any one single 
nonlinear term was iterated upon, the maximum increase in the allowable 
time step was seen when that term was the GWC flux times G term weighted 
equally at time levels k-1, k, and k+1. Furthermore, when iterated upon in 
conjunction with the other nonlinear terms using optimum time weights, the 
percent change ranged from 200% for the quadratic-like bathymetry (Figure 
1) with variable , to over 1000% for both the quadratic and East coast 
bathymetry (Figure 2) with constant . 

Conclusions

Results from the 1D experiments indicate the following:
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• The limiting Courant number without iterative improvement is 1.0. 
• With iterative improvement, more than a 100% gain in the maximum 

stable time step can be realized for all test problems herein. For some 
of the simulations, we realized over a ten-fold increase. 

• The nonlinear term that most influences stability is the  term 
in the GWC equation, while the second most influential is the advec-
tive term in the NCM equation. 

• For conditions of the model problem, the stability gained from the iter-
ative improvement on the above terms is maximum when the  ratio 
is greater than 1, but less than 50. However, we recommend an upper 
bound of 10 be used in order to avoid spurious oscillations. 

• For nearly all experiments, using two iterations results in only marginal 
gains in stability, while going from two to three iterations gave no 
improvement for any of the experiments. Thus, it appears the solution 
has converged to near machine accuracy after a single iterative 
improvement loop. 

• For all nonlinear terms in the GWC equation, weighting terms equally 
between time levels k-1, k, and k+1 resulted in the most consistent 
increase in the allowable time step. For nonlinear terms in the NCM 
equation, equal weighting between time levels k and k+1 gave the most 
consistent improvements. This result is in accord with the time weights 
used for other terms in the respective equations. 

• In all problems, we found a higher percent increase in the allowable 
, and a higher absolute , when the node spacing was constant. 

• Maximum improvement and the optimum set of time weights is grid 
and problem dependent. In lieu of extensive trial and error experi-
ments, we recommend that two nonlinear terms be updated with a 
single predictor-corrector loop: 1) the GWC flux times G term with 
equal time weights between k-1, k, and k+1; 2) the NCM advective 
term with equal time weights between k and k+1. 

Future work

While the results from the one-dimensional experiments are encouraging, 
additional testing, analyses, and sensitivity studies are needed, including the 
effects of boundary conditions and other grid spacing algorithms besides 
the  criterion. However, given the positive results herein, we are 
proceeding to test the predictor-corrector time marching algorithm in the 
2D/3D Adcirc code. 

G∇ • Hv( )

G/τ

∆t ∆t

λ /∆x



References

1 Wang, J.D. and Connor, J.J., Mathematical Modeling of Near Coastal 
Circulation, MIT Parsons Lab. Report No. 200, Cambridge, MA, 1975. 

2 Lynch, D.R. and Gray, W.G., A Wave Eqn Model for Finite Element 
Tidal Computations, Comp. and Fluids, 7(3), pp. 207-228, 1979.

3 Kinnmark, I.P.E., The Shallow Water Wave Equations: Formulation, 
Analysis, and Application, Lecture Notes in Engineering, No. 15, 
Springer-Verlag, 1986.

4 Kolar, R.L. and Gray, W.G., Shallow Water Modeling in Small Water 
Bodies, Computational Methods in Surface Hydrology, eds. G. 
Gambolati et al., Computational Mechanics Publications/Springer-
Verlag, pp. 149-155, 1990.

5 Naimie, C.E. and Lynch, D.R., Applications of Nonlinear Three-
Dimensional Shallow Water Equations to a Coastal Ocean, Computa-
tional Methods in Water Resources IX, Vol. 2: Mathematical Modeling 
in Water Resources, eds. Russell et al., Computational Mechanics/
Elsevier, Southampton/London, pp. 589-608, 1992.

6 Kolar, R.L., Gray, W.G. and Westerink, J.J., Boundary Conditions in 
Shallow Water Models - An Alternative Implementation for Finite 
Element Codes, Int’l J. for Num. M. in Fluids, 22, pp. 603-618, 1996.

7 Chippada, S., Dawson, C.N., Wheeler, M.F. and Martinez, M.L., 
Parallel Computing of Finite Element Surface Water Flows, CMWR XI. 
Volume 2: Computational Methods in Surface Flow and Transport 
Problems, eds. Aldama et al., pp. 63-70, 1996. 

8 Luettich, R.A., Westerink, J.J., and Scheffner, N.W., ADCIRC: An 
Advanced Three-Dimensional Circulation Model for Shelves, Coasts, 
and Estuaries, Dept. of the Army, U.S. Army Corps of Engineers, 
Washington, D.C., 1991.

9 Kolar, R.L., Westerink, J.J., Gray, W.G. and Luettich, R.A., Shallow 
Water Modeling in Spherical Coordinates: Equation Formulation, 
Numerical Implementation, and Application, J. of Hydraulic 
Research, 32(1), pp. 3-24, 1994. 

10 Westerink, J.J., Luettich, R.A., Baptista, A.M., Scheffner, N.W., and 
Farrar, P., Tide and Storm Surge Predictions Using a Finite Element 
Model, Journal of Hydraulic Engineering, 118, pp. 1373-1390, 1992. 

11 Gray, W.G., A Finite Element Study of Tidal Flow Data for the North 
Sea and English Channel, Adv. in Water Res., 12(3), pp. 143-154, 
1989.

12 Kolar, R.L., Westerink, J.J., Cantekin, M.E. and Blain, C.A., Aspects 
of Nonlinear Simulations Using Shallow Water Models Based on the 



Wave Continuity Eqn., Comp. and Fluids, 23(3), pp. 523-538, 1994. 



Key Words

time marching, stability, shallow water models, wave continuity equation, 
finite elements


	An improved time marching algorithm for GWC shallow water models
	R. L. Kolar1, J. P. Looper1, J. J. Westerink2, W. G. Gray2
	1School of Civil Engineering and Environmental Science
	202 W. Boyd, Room 334
	University of Oklahoma, Norman, OK 73019
	kolar@ou.edu looperjp@ou.edu
	2Department of Civil Engineering and Geological Sciences
	156 Fitzpatrick Hall
	University of Notre Dame, Notre Dame, IN 46556
	jjw@photius.ce.nd.edu wggray@gauss.ce.nd.edu
	Abstract
	Background
	Conservation equations
	(1)

	Original solution algorithm
	Alternative time marching algorithm
	The algorithm
	Numerical experiments
	Table 1 . Numerical stability experiments for the model problem.



	1
	NCM advective
	form of the term (cons./non-cons.); no iterative improvement
	0.95
	0.0%
	2
	GWC advective
	# iterations; center at k or k+1/2
	1.02
	7.4%
	3
	NCM advective
	# iterations; center at k or k+1/2
	1.12
	17.9%
	4
	GWC finite
	amplitude
	# iterations; center at k or k+1/2
	0.95
	0.0%
	5
	GWC flux times G
	# iterations; center at k or k+1/2
	1.51
	55.8%
	6
	GWC flux times
	# iterations; center at k or k+1/2
	0.95
	0.0%
	7
	Permutations of Groups 2 through 6
	center at k or k+1/2
	2.14
	121%
	Results
	Conclusions
	Future work
	References
	1 Wang, J.D. and Connor, J.J., Mathematical Modeling of Near Coastal Circulation, MIT Parsons Lab. Report No. 200, Cambridge, MA, 1975.
	2 Lynch, D.R. and Gray, W.G., A Wave Eqn Model for Finite Element Tidal Computations, Comp. and Fluids, 7(3), pp. 207-228, 1979.
	3 Kinnmark, I.P.E., The Shallow Water Wave Equations: Formulation, Analysis, and Application, Lecture Notes in Engineering, No. 15, Springer-Verlag, 1986.
	4 Kolar, R.L. and Gray, W.G., Shallow Water Modeling in Small Water Bodies, Computational Methods in Surface Hydrology, eds. G. Gambolati et al., Computational Mechanics Publications/Springer- Verlag, pp. 149-155, 1990.
	5 Naimie, C.E. and Lynch, D.R., Applications of Nonlinear Three- Dimensional Shallow Water Equations to a Coastal Ocean, Computa tional Methods in Water Resources IX, Vol. 2: Mathematical Modeling in Water Resources, eds. Russell et al., Comp...
	6 Kolar, R.L., Gray, W.G. and Westerink, J.J., Boundary Conditions in Shallow Water Models - An Alternative Implementation for Finite Element Codes, Int’l J. for Num. M. in Fluids, 22, pp. 603-618, 1996.
	7 Chippada, S., Dawson, C.N., Wheeler, M.F. and Martinez, M.L., Parallel Computing of Finite Element Surface Water Flows, CMWR XI. Volume 2: Computational Methods in Surface Flow and Transport Problems, eds. Aldama et al., pp. 63-70, 1996.
	8 Luettich, R.A., Westerink, J.J., and Scheffner, N.W., ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries, Dept. of the Army, U.S. Army Corps of Engineers, Washington, D.C., 1991.
	9 Kolar, R.L., Westerink, J.J., Gray, W.G. and Luettich, R.A., Shallow Water Modeling in Spherical Coordinates: Equation Formulation, Numerical Implementation, and Application, J. of Hydraulic Research, 32(1), pp. 3-24, 1994.
	10 Westerink, J.J., Luettich, R.A., Baptista, A.M., Scheffner, N.W., and Farrar, P., Tide and Storm Surge Predictions Using a Finite Element Model, Journal of Hydraulic Engineering, 118, pp. 1373-1390, 1992.
	11 Gray, W.G., A Finite Element Study of Tidal Flow Data for the North Sea and English Channel, Adv. in Water Res., 12(3), pp. 143-154, 1989.
	12 Kolar, R.L., Westerink, J.J., Cantekin, M.E. and Blain, C.A., Aspects of Nonlinear Simulations Using Shallow Water Models Based on the Wave Continuity Eqn., Comp. and Fluids, 23(3), pp. 523-538, 1994.


	Key Words
	Figure 1 . Bathymetry for quadratic test problems.
	Figure 2 . Bathymetry for Western North Atlantic test problems.
	Figure 3 . Sensitivity of stability to the ratio for conditions of the model problem.


