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ABSTRACT: Currently, wave equation models discretize the generalized wave continuity equation with a 
three-time-level scheme centered at k and the momentum equation with a two-time-level scheme centered at 
k+1/2; nonlinear terms are evaluated explicitly. However in highly nonlinear applications, the algorithm 
becomes unstable for high Courant numbers. This paper examines the use of an implicit treatment of the 
nonlinear terms by using an iterative predictor-corrector algorithm. This algorithm was chosen because it is easy 
to implement in the framework of existing codes and because it minimizes the size of the matrices that must be 
stored and inverted. Two-dimensional results show over a eight-fold increase in the size of the stable time step, 
depending on grid resolution and domains. Sensitivity of stability to variations in the G parameter was exam-
ined; results show that the greatest increase in stability occurred when G/τmax = 1 to 10. 
1  INTRODUCTION

Shallow water equations are based on depth-averaged 
equations of motion, subject to the assumption of a 
hydrostatic pressure distribution; they are used by 
researchers and engineers to model the hydrodynamic 
behavior of oceans, coastal areas, estuaries, lakes and 
impoundments. Early finite element solutions of the 
primitive shallow equations were plagued with 
spurious oscillations. Lynch & Gray (1979) intro-
duced the wave continuity equation (WCE), which 
suppressed the spurious oscillations without having to 
dampen the solution either numerically or artificially. 
Kinnmark (1986) determined that there was no loss in 
the wave propagation characteristics of the wave 
continuity equation if, during the formulation, the 
bottom friction τ is replaced by a numerical parameter 
G, thus developing the generalized wave continuity 
equation (GWCE). Several models have been devel-
oped using this approach since its conception twenty 
years ago, including the model used in this paper, 
ADCIRC (an ADvanced 3-D CIRCulation model) 
(Luettich et al. 1991, Westerink et al. 1992).

Many sources provide the full shallow water equa-
tions (Blain 1994, Luettich et al. 1991); for brevity 
only the GWCE and non-conservative form of the 
momentum (NCM) equation will be shown. They 
form the basis of the ADCIRC model. Each equation 
shown below has abbreviations appearing above the 
nonlinear terms, which will be discussed in subse-
quent sections.

GWCE

(1)

NCM Equation

(2)

where  is free surface elevation relative to the geiod, 
G is the GWCE numerical parameter, t is time, 

 is the total water column depth, h is the 
bathymetric depth relative to the geiod, f is the Cori-
olis parameter, pa is the atmospheric pressure at the 
free surface, v is the depth-averaged velocity, g is the 
acceleration due to gravity,  represents bottom fric-
tion that is parameterized using a Chezy-type empir-
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ical relation,  is the density of water,  represents 
the Earth elasticity factor,  is the macroscopic stress 
tensor and  is the Newtonian equilibrium tidal 
potential (Blain 1994). 

A number of early finite element studies looked at 
time marching, but often from a noise suppression 
point-of-view. For example, Lee & Froehlich (1986) 
summarize several time-marching procedures in their 
review paper on shallow water equations, which 
covers everything from the trapezoidal rule to three-
level semi-implicit schemes. Gray & Lynch (1977) 
showed several of the same time-marching proce-
dures in greater detail. They indicate that the best 
scheme for finite element shallow water models is the 
three-level semi-implicit scheme. Several years later 
Kinnmark & Gray (1984) examined an alternative 
semi-implicit wave equation that produced accurate 
results, yet still treated some nonlinear terms explic-
itly. However, little recent work with GWCE-based 
models has been devoted to alternative time- 
marching algorithms. The intent of this study is to fill 
the gap, viz, an implicit treatment of nonlinear terms 
in both the GWCE and momentum equation.

Motivation for this study comes from nonlinear 
applications having stability problems unless a severe 
Courant number restriction is imposed. In practice, 
we have found that a practical upper bound of the 
Courant number is 0.5 in other to maintain stability; 
an even tighter constraint must be imposed if the 
simulation includes barrier islands and constricted 
inlets. In order to relax this restriction, an alternative 
time-marching procedure was proposed that treats the 
dominant nonlinear terms implicitly (Kolar et al. 
1998). This paper explores the use of a predictor-
corrector algorithm rather than simultaneous integra-
tion of the full nonlinear equations since it is easier to 
implement in the existing framework of ADCIRC. It 
also minimizes the size of the matrices that must be 
stored and inverted. We examine the impact of the 
algorithm on stability and parameter sensitivity in the 
context of two-dimensional applications. 

2  THE TIME-MARCHING ALGORITHM

As a point of departure, let us examine the current 
time-marching algorithm in ADCIRC. It is a semi-
implicit evaluation, i.e., an explicit evaluation of the 
nonlinear terms with an implicit treatment of the 
linear terms. For the past and present time levels in 
ADCIRC, the elevation and velocity values are 
known due to initial conditions or previous calcula-
tions. For the linear terms, the original algorithm uses 
the elevation and velocity values for the past (k-1) and 
the present (k) to calculate the future time level’s 
values. Nonlinear terms are evaluated using only the 
elevation and velocity values at the present time level 
(k). Kolar et al. (1998) hypothesized that the stability 
constraint stems primarily from the explicit treatment 

of the nonlinear terms. 
For the nonlinear terms to be evaluated implicitly, 

a two-stage predictor-corrector time-marching algo-
rithm is introduced. In this case the predictor stage is 
equivalent to the original algorithm, i.e., it evaluates 
the nonlinear terms using the values from the present. 
Estimates of future values obtained from the predictor 
step (called k*) and the already known present (k) and 
past (k-1) values are then used to obtain the corrected 
values for the future time level (k+1). The corrector 
stage can be repeated as many times as necessary until 
convergence. 

Both the GWCE and NCM equations contain 
nonlinear terms. Our study primarily focuses on six 
dominant nonlinear terms that are identified in (1) and 
(2). Four of the nonlinear terms appear in the GWCE: 
advective (abbreviated ag), finite amplitude (abbrevi-
ated fg), GWCE flux times G (abbreviated Gg) and 
GWCE flux times τ (abbreviated bg); two appear in 
the NCM equation: the advective term (abbreviated 
am) and the bottom friction term (abbreviated bm). 

Figure 1 shows the pseudo code for the predictor-
corrector algorithm for one of the nonlinear terms. 
Time weights are introduced that multiply the 
nonlinear terms at different levels. Choosing the 
appropriate time weights for the nonlinear terms is an 
issue in the new algorithm. Note that usage of the time 
weights only occurs in the corrector step because the 
nonlinear terms are evaluated explicitly in the 
predictor step. In Figure 1, the time weights are noted 
by the abbreviations mentioned earlier with a number 
following the abbreviation that represents the time 
level, i.e., 1=time level k+1 or k*, 2=time level k and 
3=time level k-1. The first box contains the predictor 

step; it uses no time weights and provides the estimate 
of the elevation and velocity values at the future time 
level (k*). The second box contains the corrector step; 
it contains time weights that are multiplied by the 
nonlinear term. The coefficients ag1, ag2 and ag3 are 
the time weights for the k+1 (or k*), k, k-1 time levels 
(future, present and past), respectively, for the advec-
tive term of the GWCE. Nomenclature for the other 
nonlinear terms follows the same pattern. In theory, 
the time weighting coefficients may equal any value 
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Figure 1.  Predictor-Corrector algorithm for the GWCE 
advective term “ag”

Predictor where:
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as long as they sum to one; for practical reasons, the 
values are restricted to lie between 0 and 1. Examples 
are shown in Table 1.

3  ONE-DIMENSIONAL SUMMARY

Tests in 1-D included looking at stability, sensitivity 
to the G parameter, accuracy and optimum time 
weights for five domains: constant bathymetry, three 
cases of parabolic bathymetry and eastcoast bathym-
etry. Further details on the analysis and procedures 
are given in a paper by Dresback & Kolar (1999). 
Important findings from the 1-D work include the 
following.
• Only one iteration of the corrector step in the new 

algorithm is necessary to maximize stability. 
• At least two-fold gains in the maximum stable time 

step were seen for most of the domains. For some 
of the simulations there was a ten-fold increase. 

• Maximum increases occurred when nonlinear 
terms were updated either four at a time or five at 
a time. 

• The GWCE flux times G term and the NCM 
advective terms influence stability the most.

• For variably-spaced grids, stability is influenced 
by the mesh generating technique.

• G-values that produce minimal mass balance 
errors and errors in the generation of the nonlinear 
constituents coincide with those that produce the 
maximum stable time step, viz, G/τ between 2 and 
10. 

• Stability gains and the optimum set of time 
weights are somewhat grid and problem depen-
dent. However, we discovered the largest increase 
in stability usually happened when the time 
weighting scheme for the nonlinear terms followed 
the other terms in the two equations. Thus, the 
GWCE nonlinear terms should be centered at k
(Example 1 in Table 1) and the NCM nonlinear 
terms should be centered at k+1/2 (Example 2 in 
Table 1). 

4  TWO-DIMENSIONAL DOMAINS

Domains evaluated were the quarter circle harbor and 

the Bahamas. Six different resolutions (5x5, 10x10, 
15x15, 20x20, 25x25 and 30x30) for the quarter circle 
harbor and a coarse Bahamas discretization make up 
the experimental grids.

Figure 2 shows the quarter circle harbor with a 
10x10 grid resolution; boundary locations are 
marked. Boundary conditions for the land areas are no 
flow boundaries, meaning that the normal velocity is 
set equal to zero, while ocean boundaries have an M2
tidal forcing, meaning the elevation values vary sinu-
siodally with a period of 12.42 hours. The Chezy 
coefficient is set at 0.003 with no eddy viscosity, and 
the simulation is ramped up from a cold start. 

For the Bahamas grid, Figure 3 shows the domain 
and boundary locations. The ocean boundary has five 
tidal constituents, M2, O1, K1, S2, and N2. Coriolis is 
set at 5.9 x 10-5 with no eddy visocity and the Chezy 
coefficient is set at 0.009. The simulation is ramped 
up from a cold start. Unless noted otherwise, the 
recommendations from the 1-D experiments were 
followed. 

5  STABILITY EXPERIMENTS

Traditional stability studies, such as Fourier analysis, 
are valid for linear problems. Here, the nonlinear 
equations preclude the use of such analytical 
methods, thus numerical experiments were used to 
determine stability. For each simulation, the 
maximum stable time step, to the nearest five 
seconds, was defined as that which can be used 
without causing overflow errors before the end of the 
simulation. Stability changes with the new algorithm 
were determined from these steps: 1) Each domain 
was evaluated using the original algorithm to obtain 
the maximum stable time step; 2) Each domain was 
evaluated using the new algorithm to obtain the 
maximum stable time step; 3) Results are used to 
compute the percent change between the two. It 
should be noted that since each corrector iteration 
requires another matrix inversion, only simulations 
that show more than a % change, where n is 
the number of corrector steps, are considered cost-
effective. This is a conservative estimate because it 
assumes the entire load vector is re-evaluated with 
each iteration, while in reality, only the nonlinear 
terms need to be updated. Based on 1-D results, only 
one corrector iteration is performed in all the simula-
tions, therefore only a 100% change is needed for the 
algorithm to be considered cost-effective. Note that 
100% change corresponds to a two-fold increase in 
the maximum stable time step.

5.1  Quarter Circle Harbor Domain

Stability results for this set of experiments are shown 
in Table 2. Equation 3 gives the formula for the 
Courant number, Cr, which is based on linear wave 

Table 1.  Possible Combinations of the Time Weighting 
Factors

Ex. #
ag1 (k* 
or k+1)

ag2 (k) ag3 (k-1) Comment

1 0.33 0.34 0.33 Centered at k

2 0.5 0.5 0.0 Centered at k+1/2

3 0.0 1.0 0.0 Explicit

4 1.0 0.0 0.0 Fully Implicit

n 100×



Figure 2.  Quarter Circle Harbor Domain (10x10 grid resolution)

Figure 3.  Bahamas Domain

Ocean 
Boundary

Land
Boundaries

Ocean
Boundary

Land
Boundaries

Conditions:

Min. Depth 3.05 m

Max. Depth 19.05 m

inner radius 60,957 m

outer radius 152,393 m

M2 amplitude .305 m

# nodes 121

# elements 200

Conditions:

Min. Depth 1.0 m

Max. Depth 9.0 m

M2 amplitude 0.395 m

O1 amplitude 0.075 m

K1 amplitude 0.095 m

S2 amplitude 0.06 m

N2 amplitude 0.10 m

# nodes 926

# elements 1696



celerity, , the minimum node spacing, , 
and the time step,  (held constant for a given simu-
lation). 

(3)

For each quarter circle harbor grid, we computed the 
Courant number using a minimum bathymetry of 
three meters (the interior nodes of the domain). G was 
set to 0.001 sec-1 for all simulations. Stability results 
shown here have all six nonlinear terms evaluated 
implicitly using the time weighting schemes 
mentioned earlier. 

Results from these experiments demonstrate that 
the new algorithm drastically increases the maximum 
allowable time step. Here the maximum stable time 
step increases over three-fold (215%) for the coarser 
grid to over eight-fold (728%) for the finer grid. This 
demonstrates that all six grids obtain the break-even 
point of 100%, as was discussed earlier. 

We also examined the minimum Courant number 
for all six of the grids. Theoretically for purely 
explicit time-marching schemes, the Courant number 
must be less than one or instabilities will occur in the 
solution. However in practice, instabilities occur 
when a Courant number of approximately 0.5 is used 
with the original time-marching algorithm, even 
though it was semi-implicit. In Table 2, we see a defi-
nite limiting Cr value for the semi-implicit algorithm 
of 0.45 to 0.50. On the other hand, allowable Courant 
numbers are greater than one in all cases for the 
predictor-corrector algorithm, ranging from 1.50 to 
3.75. 

5.2  Bahamas Domain

Table 3 shows the stability results for this application. 
The Courant numbers is obtained using (3), which is 
based on the variables discussed earlier and a 
minimum bathymetry of 1.06 meter (near the ocean 

boundary of the southern part of the domain). G was 
set to 0.005 sec-1 for all the simulations. Stability 
results include all six nonlinear terms evaluated 
implicitly using the time weighting schemes 
mentioned earlier. 

With this domain, we again see a considerable 
increase in the maximum allowable time step. The 
maximum allowable time step increases over four-
fold (311%), which is greater than the break-even 
point of 100%. For the semi-implicit time-marching 
algorithm, the Courant number follows the trend seen 
with the quarter circle domain, i.e., a limiting value of 
0.5. While with the new time-marching algorithm, we 
obtain a higher limiting value for the Courant number, 
equal to 2.18. 

5.3  Summary

With the implicit time-marching algorithm, we found 
that the Courant stability constraint is relaxed. With 
each of these domains, the maximum stable time step 
increases at least three-fold, and up to eight-fold is 
possible. For the quarter circle harbor domain, the Cr
values ranged from 1.5 to 3.75, with the values 
increasing as the grid was refined. This is a very good 
trend because the fine grid applications are where we 
have the most stringent constraints (with the current 
code). A maximum Cr value for the Bahamas domain 
was determined to be 2.18. Based on these two 
domains, a good rule of thumb for Cr values would be 
1.5 to approximately 2.0, with lower values being 
needed for coarser resolutions. Finally, we caution the 
user that simulation results deteriorate rapidly as one 
approaches the maximum stable time step. Therefore, 
something less than the upper bound (e.g. 90%) 
should be used in practice.

6  ANALYSIS OF NONLINEAR TERMS

In this section, we evaluate each of the nonlinear 
terms individually to determine their relative influ-
ence. Analyses in 1-D showed that the two most influ-
ential terms were the GWCE flux times G term and 
the advective term of the NCM equation. Other 
nonlinear terms showed importance only in certain 
situations. For example, the GWCE flux time τ is only 
important if the τ values are approximately the same 
magnitude as the G values. For any term to be consid-

c gh= ∆x
∆t

Cr c ∆t×
∆x

--------------=

Table 2   Stability Results for Quarter Circle 
Harbor Bathymetry

Grids

Max. ∆t in seconds
(Courant #) Percent

Increase
Original P-C

5x5 2210 (0.50) 6970 (1.50) 215%

10x10 1195 (0.5) 4970 (2.07) 316%

15x15 735 (0.45) 4000 (2.47) 444%

20x20 550 (0.45) 3660 (3.00) 565%

25x25 445 (0.45) 3330 (3.40) 648%

30x30 370 (0.45) 3065 (3.75) 728%

Table 3   Stability Results for Bahama Bathymetry

Grid

Max. ∆t in seconds
(Courant #) Percent

Increase
Original P-C

Bahama 280 (0.53) 1150 (2.18) 311%



ered influential, we look for a percent change that is 
near the break-even point of 100%.

For each of the nonlinear terms, we determined the 
maximum stable time step when only the nonlinear 
term under study was “turned on” and all the other 
nonlinear terms were “turned off”. “Turned on” 
means that the time weighting scheme for that partic-
ular nonlinear term follows example 1 or 2 in Table 1, 
while “turned off” follows example 3 in Table 1. Note 
that when the terms are “turned off”, they return back 
to the explicit evaluation. 

6.1  Quarter Circle Harbor Domain

In this domain, a G value of 0.001 sec-1 was used for 
all of the simulations. We found that for all six grid 
resolutions, the most influential term was the GWCE 
flux times G term, with increases in the maximum 
time step greater than the break-even point (160% to 
660%). All other terms produced results that did not 
reach the break-even point of 100%. In fact, their 
maximum stable time step tends to be nearly the same 
as that found with the original formulation. 

6.2  Bahamas Domain

For this domain, a G value of 0.005 sec-1 was used for 
all the simulations. Again, results show the most 
influential term is the GWCE flux times G term. 
Increases in the maximum stable time step (230%) are 
greater than the break-even point. The other nonlinear 
terms produced results well below the break-even 
point of 100% and therefore these nonlinear terms are 
not as influential as the GWCE flux times G term by 
itself. 

6.3  Summary

From these results, we can determine the most influ-
ential term of all the nonlinear terms is GWCE flux 
times G. Many of the other terms provide some 
improvements to the stability, but do not obtain the 
break-even point. However, one should note that 
when the other nonlinear terms are updated simulta-
neously with the GWCE flux times G term, they had 
a bigger impact on the maximum stable time step than 
any single individual term. Thus, there must be 
“synergy” of sorts between terms i.e., stability is 
enhanced by treating all terms consistently.

7  G SENSITIVITY STUDIES

As noted in the previous section, the single most 
influential nonlinear term is the GWCE flux times G
term. This finding was true for all the domains tested 
so far, 1-D and 2-D. For this study, we wanted to 
determine the affect of G, the numerical parameter in 
the GWCE equation, on the maximum stable time 

step. We note that in previous work by Kolar et al. 
(1994), a range of G/τmax values (2 to 50) has been 
shown minimize mass balance errors and errors in the 
generation of nonlinear constituents. But they also 
note that as the G/τmax ratio increases above 10, oscil-
lations may start to appear in the solution. Thus, the 
“optimum” range of G that minimizes mass balance 
and nonlinear constituents errors is between τmax to 
10τmax for the quarter circle harbor and the Bahamas. 
For nonlinear applications, the closure equation for 
bottom friction is given by

, (4)

where u, v are the velocity values for the simulation, 
Cf is the Chezy coefficient, and  is the total 
water column depth. Maximum τ occurs in regions 
with a high velocity field and shallow depth. 

Sensitivity analyses were conducted on the two 
domains, quarter circle harbor and Bahamas. For the 
new implicit time-marching algorithm, the G param-
eter ranged between 5x10-6 to 0.5 sec-1 for each of the 
domains. Simulations used the new predictor-
corrector algorithm, with all the GWCE nonlinear 
terms centered at k and the NCM nonlinear term 
centered at k+1/2. For each parameter value, the 
maximum stable time step was obtained, which was 
then compared to the maximum stable time step from 
the original algorithm with G held constant at 10-3

sec-1 for the quarter circle harbor domain and 0.005 
sec-1 for the Bahamas domain. 

7.1  Quarter Circle Harbor Domain

Figure 4 shows the results for these sensitivity studies 
for three grid resolutions, 10x10, 20x20 and 30x30. 
Using (4), we determined that for this domain τmax is 
approximately equal to 10-4 sec-1, which means the 
“optimum” range for G is 10-3 to 10-4 sec-1. For all the 
grids examined, the greatest percent increase in 
stability occurs when G ranges between 10-3 and 10-4

sec-1. For example, for finer resolutions of the grid, 
we see peaks in the percent increase in stability with 
G values of 0.0008 sec-1 (30x30) and 0.0005 sec-1

(20x20). From this information, it is evident that the 
G values for maximum stability for these grids lie in 
the range of 10-3 to 10-4 sec-1, which coincides with 
the “optimum” range of G from a mass balance and 
constituent error point-of-view. 

7.2  Bahamas Domain

Figure 5 shows the results for these sensitivity studies 
for the Bahamas domain. We determined τmax, using 
(4), to be approximately 10-3 sec-1 for this domain, 
meaning the “optimum” range for G is 10-2 to 10-3

sec-1. Greatest percent increase in stability occurs 
when the G parameter ranges from 10-2 to 10-3 sec-1

τ Cf u2 v2+( ) H⁄=

H h ζ+=



Figure 4.  G sensitivity graph for three resolutions of the quarter circle harbor domain

Figure 5.  G sensitivity graph for the Bahamas domain
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with the peak occurring at a G parameter value of 
0.0025 sec-1. From this information, it is evident that 
the G values for maximum stability of these grids lie 
within the range of 10-2 to 10-3 sec-1, which coincides 
with the “optimum” range of G from a mass balance 
and constituents error point-of-view. 

7.3  Summary

Comparing these results to the previous work by 
Kolar et al. (1994), we can see that the “optimum” 
range of G for these two domains overlaps with the 
range of G values that produce the greatest increase in 
stability. Thus, if we keep G/τmax values between 1 
and 10, we will be able to see both an increase in 
stability and a decrease in mass balance errors and 
errors in the generation of nonlinear constituents. 

8  CONCLUSIONS AND FUTURE WORK

Primary objectives for this study were to examine the 
use of a predictor-corrector time-marching algorithm 
for two-dimensional simulations and quantify its 
affect on stability. In general, results show a dramatic 
increase in the maximum stable time step for the two 
domains examined. Some significant conclusions that 
we can draw from this study are listed below.
• When evaluating the nonlinear terms together with 

the new algorithm, there is always 100% gain in 
the maximum stable time step. For one of the grid 
resolutions, we saw over a eight-fold increase.

• Stability results show maximum increases when 
the nonlinear terms were evaluated all together 
with the appropriate time weighting scheme.

• Analysis of individual terms show that the GWCE 
flux times G term has the greatest influence on 
stability. 

• From the G sensitivity study, it is evident that the 
G values that produce minimal mass balance errors 
and errors in the generation of the nonlinear 
constituents coincide with those that produce the 
maximum stable time step (G/τmax=1 to 10). 

• Results show that the Courant number constraint 
can be increased from 0.5 for the semi-implicit 
time-marching algorithm to approximately 1.5 to 
2.0 for the two domains examined with the implicit 
time-marching algorithm. 

It is apparent from these results that the new 
implicit time-marching algorithm significantly 
enhances the ability of ADCIRC to perform fast, reli-
able simulations. Future work includes looking at 
larger, more complicated domains, such as the Gulf of 
Mexico, Western North Atlantic, and also some 
Pacific grids. We will also look at the accuracy effects 
of the new algorithm that parallels our 1-D assess-
ment. 
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