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ABSTRACT: Two algorithms that have been used for shallow water simulations on unstructured meshes are 
the generalized wave continuity (GWC) algorithm and selective mass lumping (SLFE). Both produce noise free 
solutions; the former by its ability to propagate short wave components, and the latter by its ability to damp the 
short waves that are not propagated. Recently, the finite volume method, which has been used in gas dynamics, 
has emerged as the basis for another solution algorithm on unstructured meshes. Advantages include its ability 
to conserve mass at an element level and its ability to handle shocks in the solution (supercritical flow prob-
lems). Herein we demonstrate that the phase propagation behavior, as represented by Fourier analysis, of the 
low-order finite volume method is more similar to SLFE than GWC. On the other hand, with the proper choice 
of parameters, the dispersion relation for the finite volume method is more similar to the GWC than SLFE. Thus, 
the algorithm can uniquely resolve all frequencies with minimal damping. 
1  INTRODUCTION

1.1  Motivation

Shallow water equations (SWE) are used to model 
hydrodynamics in lakes, estuaries, coastal regions, 
and other impoundments. Accurate solutions demand 
that the algorithm does not introduce spurious modes. 
Examples of such solutions include the wave conti-
nuity approach (Lynch and Gray 1979) and the stag-
gered finite difference approach (Leendertse 1967). A 
common characteristic of these solutions is a mono-
tonic dispersion relationship. Fourier analysis can 
also be used to examine the phase propagation and 
damping properties of a discrete algorithm, where the 
desired behavior is to have only those waves that are 
out of phase be damped in the solution process (typi-
cally high frequency components on the order of 
2 x).

A new solution method that has recently come 
onto the scene in shallow water applications is the 
finite volume method (FVM). The FVM has enjoyed 
use in gas dynamics related to mechanical and aero-
space engineering applications, but it has not seen 
widespread use in hydrodynamic modeling. The 
method applies local conservation of mass and 
momentum by integrating over a discrete volume and 
then solves for the boundary fluxes on each volume 
using an approximate Riemann solver, such as Roe’s 
linearization. Advantages include its ability to capture 
shocks without introducing spurious oscillations, 
local and global mass conservation, utilization of the 

primitive form of the equations, and the ability to 
handle irregular meshes. 

To our knowledge, phase behavior of the FVM, as 
applied to the system of SWE, has not been examined 
previously. In this work, we compare the phase prop-
erties of the FVM to other solution algorithms 
currently in use. 

1.2  Model backgrounds

The system of SWE arise from the depth-averaged 
Navier-Stokes equations and require numerical tech-
niques for solution over complex domains. Herein we 
will present a brief description of each of the algo-
rithms that we examine in our study. Further details 
can be found in the references. 

One of the first successful algorithms that did not 
produce spurious modes was the staggered finite 
difference (SFD) scheme (Leendertse 1967). This 
approach uses a staggered central difference stencil 
on a regular grid with the velocity evaluated at the 
grid interfaces and elevation centered in the middle of 
the grid block. This ensures perfect mass balance at 
local and global levels.

Before the introduction of the GWC equation, the 
primitive system of SWE were discretized using 
various finite elements, such as linear and higher 
order basis functions, quadratic and cubic isopara-
metric elements, and mixed interpolants. The discret-
ization used for comparative purposes in this paper is 
the piecewise linear Galerkin finite element, which is 
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plagued by spurious oscillations. In future sections, 
this method will be noted as the Primitive FE (PFE) 
method. 

Motivated by the generally poor results from the 
primitive forms of the SWE, another technique 
derived by Lynch and Gray (1979) was to modify the 
system of SWE before trying numerical solutions. 
They proposed to use their derived wave continuity 
equation instead of the primitive continuity in the 
shallow water model. This approach was further 
modified with the addition of a numerical G param-
eter to obtain the GWC equation (Kinnmark 1986), 
which is the form studied herein. The resulting GWC 
equation and the non-conservative momentum equa-
tion were then discretized using piecewise linear 
Galerkin finite elements. This method has proven to 
reduce the presence of spurious oscillations, yet 
maintains good conservation properties by using a 
numerical G parameter whose value varies for 
different physical simulations (Kolar et al. 1994). By 
increasing the magnitude of G, the GWC equation 
more closely resembles the primitive continuity form. 
The time-stepping scheme for the GWC utilized in 
this paper is centered at level k by setting the 
weighting coefficients ( ) equal to 1/3. 

Another finite element technique of the same 
generation is the selective lumping (SLFE) scheme of 
Kawahara et al. (1982). This is a two-step explicit 
scheme in which the mass matrix is selectively 
lumped by using a lumping parameter e with standard 
linear Galerkin elements. The parameter can take on 
values between 0.0 (consistent mass matrix) and 1.0 
(fully lumped mass matrix), where in-between values 
“selectively” lump the mass matrix. In this paper we 
have generalized the lumping procedure by intro-
ducing a separate lumping parameter, f, for the mass 
matrix associated with the bottom friction term; this 
allows greater flexibility in the analyses.

Finally, the FVM has been applied to the primitive 
SWE by Chippada et al. (1998). This method 
discretizes the domain into finite volumes and solves 
the Riemann problem at each cell interface. Fluxes 
are computed at each face using an approximate 
Riemann solver, and then continuity principles are 
used to compute the resulting nodal values. Mass 
balance is preserved locally and globally. Low order 
schemes employ piecewise constant approximations 
within each volume, while higher order methods use 
piecewise linear (or higher) approximations. The 
nature of the discretization using high order methods 
does not lend itself to analytical techniques, so 
numerical approaches must be devised. 

2  METHODS

2.1  General equations and usage

The linearized one-dimensional form of the equations 
governing shallow water flow are presented below. 

The system of SWE includes the non-conservative 
momentum equation

(1)

and the primitive continuity equation

(2)

where  is the depth-averaged velocity,  is the 
surface elevation,  is the linear bottom friction 
factor, g is the acceleration of gravity, h is the bathy-
metric depth of water (assumed constant), and the 
subscripts indicate partial derivatives. The linearized 
GWC equation is expressed as

 (3)

where G is the numerical coefficient that determines 
the balance between primitive (large values of G) and 
pure wave (small values of G) forms.

All of the solution algorithms presented in the 
previous section use equation (1) to solve for the 
velocity field at the next time level and equation (2) to 
solve for the surface elevation at the next time level, 
with the exception of the GWC approach that uses 
equation (3) to solve for surface elevation. 

2.2  Discrete models

As the focus of this manuscript is the FVM, only its 
discrete algorithm is presented herein. For discrete 
equations of SFD, GWC, SLFE refer to Leendertse 
(1967), Luettich et al. (1991), and Kawahara et al. 
(1982), respectively. The primitive model follows as 
a limiting case of the GWC by letting . 

The starting point for the derivation of the discrete, 
low-order FVM equations is the vector form of the 
primitive equations (1) and (2), i.e., 

(4)

where

 ,  ,  , 

 (5)

Note that since u and  do not appear directly in  for 
the linear SWE, this is the same matrix as the Roe 
matrix in Leveque (1990). When working with the 
nonlinear equations, it would be necessary to find the 
Roe averaged variables using a linearization tech-
nique. The eigenvalues and eigenvectors of the matrix 
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where . The next step is to solve the Riemann 
problem at cell interfaces using 

(7)

as the relationship between the left and right states at 
a point. By substituting the definitions of (5) and (6)
into (7), it is possible to solve for the coefficients  
and  in terms of the state variables, u and . The 
numerical flux term is then approximated by 

 (8)

We now return to the system of conservation equa-
tions; the integral formulation of the system over a 
finite volume (element) is written as 

(9)

where  and  are the area and boundary of an 
element, and  is the normal flux across the 
boundary of the control volume. In one-dimension, 
the elements are line segments so the boundary inte-
gral reduces to point evaluations. Utilizing explicit 
time-stepping, the resulting discrete equations are

 (10)

where  is the average value of  in an element of 
width  and  and  are given by (8) and (5), 
respectively. Using these relations, explicit time-step-
ping, and choosing a piecewise constant representa-
tion of the variables in each control volume for low-
order approximations, the discrete equations for the 
low-order FVM are expressed as

 

           (11)

           (12)

In comparing the discrete equations (11) and (12)

with their continuum counterparts (1) and (2), we note 
that the low-order FVM is basically a central differ-
ence approximation that introduces a second order 
term into the discrete equations, viz, those terms 
preceded by  in (11) and (12). Kinnmark (1986) 
and others have noted that this is a characteristic 
feature of the GWC (and other non-oscillatory) algo-
rithm. In other words, the presence of a second order 
space derivative is correlated with the ability of an 
algorithm to successfully propagate or damp out the 
undesirable short wavelength oscillations. Subse-
quent analyses will test this hypotheses. For a more 
detailed derivation of the FVM applied to the non-
linear SWE, see Chippada et al. (1998).

2.3  Fourier analysis

2.3.1  Derivation
Fourier analysis is a useful tool to analyze the propa-
gation behavior of both analytical and discrete solu-
tions of homogeneous, linear difference or 
differential equations. Any solution that is piecewise 
continuous on a finite interval or is periodic on an 
infinite interval can be represented by a Fourier series 
expansion. If the solution (numerical or analytical) is 
a function that satisfies these minimal constraints, 
then it can be represented as a complex Fourier series

(13)

where, for the SWE, f = u or , i = ,  is the 
temporal frequency of the solution,  is 
the wave number, and An is the Fourier coefficient for 
component n. The key to Fourier analysis is that the 
linearity of the differential equation allows one to 
examine a single Fourier component of the solution at 
a time. This type of analysis is frequently referred to 
as von Neumann analysis.

The starting point for Fourier analysis is the 
discretized system of equations. A single component 
of the Fourier series, represented as

(14)

where f = u or  is substituted into the discrete algo-
rithms for each independent variable. A set of simul-
taneous equations for the independent variables 
results. A nontrivial solution is sought for the homo-
geneous system, which requires the determinant of 
the coefficient matrix to be zero. Next define the 
discrete propagation factor

(15)
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and substitute (15) into the set of equations for the 
algorithm under study. A polynomial in the propaga-
tion factor  results, which can then be solved as a 
function of the wave number. 

The damping and phase properties of the numer-
ical solution are determined by computing  and 

, respectively. The discrete results 
are then compared against the analytical propagation 
factor, which has a magnitude of 1. In this paper, the 
damping error is reported as a per timestep compar-
ison. Thus, damping error for this study is defined as

, (16)

where  = 1 for the analytical solution.
The phase error is reported as a per wavelength 

comparison. Thus, the phase error is computed after 
the analytical solution travels one wavelength, that is, 
it is computed after the solution travels Nn time steps 
where Nn = Ln / t. Analytically, a wave experi-
ences a phase change of  after Nn steps. Numeri-
cally, a wave propagates Nn  in the same time where 

 is computed from the phase expression above. With 
this, the phase error is given by

. (17)

For a difference algorithm to perfectly match the 
analytical solution of the model problem, the 
damping ratio should be 1.0 and the phase error 
should equal 0.0 for all components of the solution. 
Note that the phase error can be positive or negative, 
indicating phase lead or phase lag, respectively. 

2.3.2  Application
The polynomial expressions for the propagation 
factor, , resulting from the above analysis steps are 
summarized in Table 1 for each of the algorithms 
under study. Note that the expressions for the SFD 
and the Primitive FE differ only in the constants S, T, 
W, and Z. Also, the expressions for the FVM and 
SLFE methods are similar in form.

Parameter values for the algorithms in Table 1 for 
a typical physical simulation are h = 10m, g = 9.81 m/
s2 , G = 0.001 s-1, = 0.0001s-1, x = 1000m, t = 1s, 

λ
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Table 1. Polynomial expressions for the propagation factor, , from Fourier analysis
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and  = 0.5 for Crank-Nicholson time-stepping. The 
resulting damping and phase behavior plots are 
presented in Figures 1 and 2, respectively. 

2.4  Dispersion analysis

2.4.1  Derivation
This analysis tool utilizes the assumption that the 
solution of the differential equations can be separated 
and expressed as periodic in time and space. It varies 
from Fourier analysis in that the time variable 
remains continuous by using the harmonic form of the 
equations. The analysis results in a dispersion curve, 
which is a plot of the magnitude of the temporal 
frequency versus wave number. Platzman (1981) was 
the first to apply the analysis technique to the shallow 
water equations; he showed that a monotonic curve 
indicates a numerical solution free from spurious 2 x
oscillations. A folded curve indicates aliasing of wave 
components with one wave corresponding to the long 
physical wave while the other corresponds to short-
wavelength noise in the solution. It has been demon-
strated elsewhere that for linear elements, a folded 
curve is a necessary and sufficient condition for the 
appearance of spurious modes in the numerical solu-
tion of the SWE, but not for quadratic or other 
elements. (Kinnmark 1986). 

The harmonic form of each equation is attained by 
substituting the harmonic components expressed as

 and (18)

into the differential equations. Here  is the spatial 
harmonic of the elevation,  is the spatial harmonic of 
the velocity,  ,  is the temporal frequency of 
the solution, and t is time. The next step is to 

discretize each equation in space according to the 
solution algorithm. Then harmonic spatial solutions 
expressed as

 and (19)

are substituted into the discrete equations. Here also 
, j is the spatial node index,  is the spatial 

frequency of the solution (the wave number),  is 
the discrete spacing of nodes,  is the magnitude of 
the elevation solution and u0 is the magnitude of the 
velocity solution.

From the substitution of (19) into the discrete 
equations, a new system results

(20)

where the form of the matrix coefficients a, b, c, and 
d will vary depending upon the spatial discretization. 
A non-trivial solution will exist only when the deter-
minant is zero. Expansion results in a polynomial 
expression in  as a function of the wave number, 
which is then solved for its roots. The magnitude of 
the roots vs. wave number are plotted as a dispersion 
curve. For more background information on disper-
sion analysis see (Platzman 1981, Foreman 1983).

2.4.2  Application
The dispersion relations derived using the above tech-
nique are summarized in Table 2 for each of the algo-
rithms under study. The analytic dispersion relation 
was derived by substituting harmonics into the 
continuum equation.
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Note that the GWC solution algorithm results in a 
cubic polynomial with three roots. For a 1-D problem, 
two of these are physical roots, while the third is a 
numerical artifact from the derivative formulation of 
the GWC equation (Kinnmark 1986). Additionally, 
note that the time discretization method of the SLFE 
does not treat the mass matrix consistently between 
terms from the same time derivative. Thus, it is not 
possible to keep the time variable continuous and still 
maintain the character of the selective lumping algo-
rithm. In order to cast the equation into the time-
continuous form needed for dispersion analysis, we 
were forced to split the time derivative operator into 
two parts. One part was left as a continuous differen-
tial operator and the other was discretized using the 
selective lumping technique of Kawahara et al. 
(1982). Because of this approximation, a t artifact 
remained in the harmonic equations, which was 
parameterized with the other variables. All other 
parameter values are the same as in the Fourier anal-
ysis. The resulting dispersion curves are presented in 
Figure 3. 

3  DISCUSSION

3.1  Fourier analysis

Recall that the desired phase behavior of a difference 
algorithm is that the damping ratio should be 1.0, 
while the phase error is 0.0 for all components of the 
solution. This indicates that those components that 
are in-phase with the analytical solution are not 
damped out of the numerical solution. If the numer-
ical algorithm is unable to propagate short waves, 
then they must be damped in order to avoid spurious 
modes. Overdamping occurs when the algorithm also 
damps the predominant long physical waves. 

Figures 1 and 2 show the Fourier phase behavior. 
The GWC and SFD are able to propagate all waves 
with only a small amount phase lag or lead for short 
waves; there are no zero phase velocities (Figure 2). 
Also, the GWC and SFD have only a small amount of 
damping for short waves (Figure 1). Thus, the algo-
rithms are able to produce accurate, noise-free solu-
tions. On the other hand, primitive finite element 
models show up to a  phase error (Figure 2) for 
short waves less than 10 x i.e, they do not propagate 
short waves well. (Note that a  phase error corre-
sponds to a zero phase velocity.) Furthermore, PFE 
models do not damp these short waves (Figure 1). 
Hence, spurious modes appear in the solution because 
energy that accumulates at this end of the spectrum 
(through round-off error, nonlinear interactions, or 
initial conditions) is neither propagated nor damped. 

Selective lumping (with both lumping parameters 
set to 0.9) also does not propagate short waves (Figure 
2), but it does damp out the noise, as seen in Figure 1. 
However, the SLFE overdamps in that some predom-

inant longer physical waves are also attenuated, as 
can be seen by damping ratios less than one for waves 
greater than 10 . Such overdamping is not desir-
able. Note that the amount of damping can be 
controlled through the selection of the lumping 
parameter. However the phase behavior (Figure 2) for 
the SLFE algorithm does not change for different 
parameter values even though the damping is 
removed for higher parameter values. Thus, to 
remove all of the damping by allowing the lumping 
parameters to equal 1.0 would introduce aliasing of 
waves, which is shown here in the Fourier analysis, as 
well as in the dispersion analysis below. Finally, we 
note that the low-order FVM, the subject of this 
manuscript, behaves similarly to the SLFE with 
lumping parameters set to 0.9, viz, short waves are 
poorly propagated (Figure 2), but they are also 
damped (Figure 1). However, in contrast to SLFE, the 
damping is more controlled, i.e., less damping of the 
longer waves, as can be seen in Figure 1 where the 
FVM curve is to the left of the SLFE curve. 

3.2  Dispersion analysis

Recall that a folded dispersion curve indicates 
spurious modes in the numerical solution. The analyt-
ical dispersion relation, plotted as the dashed line in 
Figure 3, is a straight line with slope . Ideally, the 
best numerical solution would most closely approxi-
mate that relation. Note that the smallest resolvable 
wavelengths are of length 2 x, which, for the param-
eter values herein, corresponds to a -value of 

, such that the small wave-
lengths are represented in the rightmost portion of 
Figure 3.

As noted in the introductory comments, the PFE 
algorithm results in a folded dispersion curve, which 
indicates that aliasing will occur. Recall that the 
SLFE dispersion relation is somewhat of an approxi-
mation, as discussed above. However, even with the 
manipulations, the dispersion analysis produced 
meaningful results in that they corroborated findings 
from the Fourier analysis above. The SLFE algorithm 
is monotonic for the unlumped (consistent) mass 
matrix, but as the lumping parameters increases 
toward 1.0 (fully lumped), the dispersion curve folds. 
Based on numerical simulations, Kawahara et al. 
(1982) recommended that the lumping parameter be 
chosen between 0.8 and 0.9. This range is within the 
limits where the dispersion curve is monotonic, but it 
does not approximate the analytical dispersion rela-
tion well (this also confirms the poor damping 
behavior seen in the Fourier analysis). 

The GWC discretization results in a monotonic 
curve for the G parameter value examined in this 
study. However, if G becomes too large, then the 
equation approaches the primitive form, the disper-
sion curve folds over, and aliasing occurs. This is why 
Kolar et al. (1994) recommended an upper bound on 
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G of 10 , where  is the bottom friction factor. 
The FVM and SFD discretization methods result in 

monotonic dispersion curves; interestingly these 
curves are nearly identical. Upon examination of the 
equations in Table 2, it is not obvious why this might 
be the case. In any event, at the smaller wavelengths 
near 2 x, the curves deviate from the analytical rela-
tion, but they do not fold. Thus, some error is intro-
duced, but the analysis indicates solutions should be 
noise-free (simulation results bear this out). Note that 
when the scale is expanded to include wavelengths up 
to x, both dispersion relations (FVM and SFD) fold 
over. Thus, it becomes apparent that the FVM and 
SFD discretization techniques effectively shift the 
noise below the resolvable grid scale of the numerical 
approximation. 

4  CONCLUSIONS 

The finite volume method, as applied to the shallow 
water equations, is an attractive algorithm for model 
development. The low order method exhibits good 
phase behavior, a monotonic dispersion relation, and 
is inherently mass conservative. Based on simulation 
results with the Chippada et al. (1998) code, we 
expect that higher order methods, wherein dependent 
variables are interpolated with linear or higher order 
polynomials, would exhibit even better phase 
behavior. However, since the solution algorithm, in 
particular the slope limiter step, evolves with the solu-
tion itself, it does not lend itself to an analytical study 
of its phase behavior. Consequently, we are exploring 
techniques to carry out the study numerically. 

Additionally, due to the space constraints of this 
manuscript, we were unable to present sensitivity of 
the phase behavior of the various algorithms to the 
choice of numerical parameters. In particular, it 
would be instructive to determine the correlation 
between parameter values that optimize the phase 
propagation behavior of the algorithm (as represented 
by Fourier and dispersion analyses), and simulation 
results. Furthermore, analysis of the discrete phase 
behavior for the low-order FVM algorithm may 
suggest optimum values for the Courant number 
(based on linear wave celerity, the Courant number is 
given as ), while analysis of the high-
order FVM would allow us to evaluate the impact of 
slope limiters on the phase behavior. 
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Table 1. Polynomial expressions for the propagation factor, , from Fourier analysis
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Table 2. Polynomial expressions for temporal frequency, , from dispersion analysis
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