
 
 
1 INTRODUCTION 
 
Finite element discretizations of the shallow 
water equations in primitive form, produce 
solutions that exhibit spurious (spatial) node to 
node oscillations (Kinmark & Gray 1985). The 
continuity statement may be substituted by a 
linear combination of the continuity and the 
momentum equations, which is cast in wave-
like form. The resulting equation combined 
with the momentum statement, gives rise to the 
generalized wave continuity equation (GWCE) 
formulation (Lynch & Gray 1979, Kinmark & 
Gray 1985).  

The GWCE formulation is effective in 
suppressing the nodal oscillations, but several 
investigators have observed that it appears to 
exhibit some deficiencies in conserving mass 
(Kolar et al. 1994). This paper addresses the 
mass conservation issue by employing Fourier 
analyses of both the continuous and discrete 
versions of the GWCE formulation. In order to 
simplify the analyses and interpretation of the 
results, a one-dimensional version of the said 
formulation is used. Numerical examples that 
illustrate the theoretical findings are also 
included. 
 

 
 
2 ONE-DIMENSIONAL CONTINUOUS GWCE 

FORMULATION 

2.1 Equations of motion 
As is well known, the Saint-Venant equations 
constitute the one-dimensional analogue of the 
shallow water equations. The former equations may 
be written as follows: 
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where ),( ⋅⋅L  is the mass conservation or continuity 
operator; ),( ⋅⋅M , the momentum operator; A, the 
hydraulic area; Q, the discharge; H, the water 
surface elevation; g, the acceleration of gravity; fS , 
the friction slope; x, the spatial coordinate; and t, 
time.  
The GWCE is constructed as follows: 
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where ),( ⋅⋅W  is the GWCE operator; and G, a 
constant parameter. As may be observed, as 

∞→G , LW → , i.e., the GWCE (asymptotically) 
approaches the (primitive) mass conservation 
equation. 
 
Substituting (1) y (2) en (3) results in: 
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Eq. (4), coupled with Eq.(2) constitutes the GWCE 
formulation for the one-dimensional free surface 
flow problem. 

2.2 Perturbation analysis 
Let the dependent variables A and Q in Eqs. (2) and 
(4) be decomposed as follows: 
 

AaaAA <<+= ;  and QqqQQ <<+= ; (5)

 
where A  and Q  are reference solutions of the 
system (2) and (4), and a and q are small 
perturbations to these solutions. It is further assumed 
that A  and Q  vary slowly in the scale of variation 
characteristic of a and q. Substituting (5) in (4) and 
(2) yields: 
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2.2 Localization 
We will now employ the approach developed by 
Aldama and his collaborators (Aldama & Paniconi 
1991, Aldama & Aguilar 1996, Aldama & Aparicio 
1998). That approach consists of employing a 
Taylor-Fréchet expansion of Eqs. (6) and (7), using 
the fact that 0),( =QAW  and 0),( =QAM , 
recalling that A  and Q  vary slowly in the scale of 
variation characteristic of the perturbations, and 

neglecting terms of quadratic and higher orders. 
Thus the coefficients in the equations that govern the 
behavior of a and q may be localized at a reference 
point ),( 00 tx , yielding the following system of linear 
equations with constant coeficients: 
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where the subindex “0” denotes the reference point 
( )00 , tx , 000 / AQU =  is the flow velocity associated 

with such point; and 000 gDUFr = , is the Froude 
number, where 0D  represents the hydraulic depth. In 
addition, when Manning´s friction formula is 
employed:  
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where 0R  represents the hydraulic radius associated 
with the reference point; sk , the  Nikuradse 
equivalent roughness height; and 100/17≅α  
(Aldama and Ocón 1998), and it is assumed that 

00 >Q . 

2.3 Fourier analysis 
We will now study the propagation properties of the 
system (8)-(9) in Fourier space. Since the said 
system is linear and with constant coefficients, it is 
possible, without loss of generality, to assume that 
the perturbations are given by single Fourier modes 
of the following form: 
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where k represents wavenumber and ω , frequency. 
Substituting (13) and (14) in (8) and (9) yields: 
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where  
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Eq. (15) represents a linear and homogeneous 
system in â  and q̂  that possesses nontrivial 
solutions if and only if the determinant of its 
coefficient matrix vanishes. This consideration 
generates a cubic equation in ω , whose solutions 
represent the dispersion relation for the GWCE 
formulation. Those solutions are: 
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As may be observed in Eq. (20), ω  is complex, of 
the form ir iωωω += . Therefore, the solutions for a 

and q will be stable only when 0≤iω . For the first 
two values of ω , given by (20), this inequality 
results in the following well known condition for the 
stability of one dimensional free surface flow: 
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where 0000 )/)(/)(3/2( re FdAdRRAV =  is the 
Vedernikov number. For the case of the third value 
of ω , the solutions for the perturbation quantities 
are stable when 0≥G . 

2.4 Mass conservation 

In order to evaluate whether the GWCE continuous 
formulation satisfies the mass conservation 
principle, let us substitute (5) in ),( QAL . Since 

),( ⋅⋅L  is a linear operator, we get: 
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Mass conservation requires that 0),( =QAL . Since, 
according to (5), )(Aoa =  and )(Qoq = , the last 
expression would require that both 0),( =QAL  and 

0),( =qaL . Now, from (1), (13) and (14): 
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when the fist two values of ω , given by (20), are 
substituted in (23) and q̂ is expressed in terms of â  
through the use of the second equation of the system 
(15), one gets the result 0),( =qaL , which means 
that the corresponding solutions for a and q conserve 
mass. Nevertheless, when the same procedure is 
employed, but now using the third value of ω , the 
following result is obtained: 
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As is evident from the observation of (24), the 
solution for a and q corresponding to the third value 
of ω  does not conserve mass, unless ∞→G , which 
corresponds to the case when the GWCE 
formulation approaches the primitive formulation. 
Furthermore, Eq. (24) reveals that for finite values 
of G, when the wavenumber k increases, the mass 
conservation error in the GWCE formulation is 
expected to increase.  

Therefore, since the general solution for a and q 
is expressed as a linear combination of the solutions 
corresponding to each of the three values of ω , the 
GWCE continuous formulation is not consistent 
with the mass conservation principle. 

3 ONE-DIMENSIONAL DISCRETE GWCE 
FORMULATION 
 
A time semidiscretization of the GWCE formulation 
(4) and (2) may be constructed by employing a 
weighted central difference approximation on (4) 
and a Crank-Nicolson approximation on (2) 
(Kinmark 1986; Luettich et al. 1992): 
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where the superindices denote time level and t∆ , a 
time interval. 

Full discretization on the system (25)-(26) may 
be achieved by employing a linear finite element 
spatial approximation. When a constant element size 
equal to x∆  is used, an approach similar to that 
explained for the continuous GWCE formulation 
may be employed. Thus, the solutions for area and 
discharge in the discrete system are decomposed in a 
reference solution and a perturbation. This 
decomposition is substituted in the discrete 
equations and a Taylor-Fréchet expansion of the 
result is performed. Higher order terms are neglected 
and the linearized equations are localized. Hence, a 
linear and constant coefficient system is obtained. A 
Fourier analysis may be performed on that system 
and a discrete dispersion relation may be derived. 
Once again, three values for the discrete frequency 
(or, equivalently, for the amplification factor) are 
obtained. 

A mass conservation error may be derived in a 
manner similar to that described for the continuous 
case. The corresponding expression is rather lengthy 
and, for that reason, is not included here. Denoting 
the coefficient of ikxGteea −ˆ , cp. Eq. (24), in the 
expression for the mass conservation error 
corresponding to the discrete GWCE formulation 
with mjE , where the subindex j denotes the first, 
second or third value of the discrete frequency (or 
amplification factor), a relation of the following 
form may be found: 
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where mjE  depends on the dimensionless parameters 
xk∆ , tG∆ , xtUo ∆∆ / , 0rF , eV  and 0/

0
UtgS f ∆ . The 

values of 
∞1mE  and 

∞2mE  for a wide range of the 
parameters that these norms depend on are relatively 
small (of the order of 10-4). Nevertheless, the values 
of 

∞3mE  are significant. The behavior of this norm 
as a function of tG∆  is shown in Figure 1, for 

2901.0/0 =∆∆ xtU , 4087.00 =rF , 2609.0=eV  and 
0021.0/ 00 =∆ UtgS f . 
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As expected, the mass conservation performance 

of the GWCE discrete formulation deteriorates with 
increasing values of G. The same type of behavior is 
observed for other values of the dimensionless 
parameters on which the mass conservation error 
depends. This confirms the findings presented earlier 
in relation to the lack of consistency of the GWCE 
formulation with the mass conservation principle. 

4 VALIDATION 
 
To validate the theoretical results presented in the 
previous sections, a series of simulations were 
conducted on four different one-dimensional 
domains: 1) a constant bathymetry channel that is 5 
m deep and 50 km long; 2-3) a parabolic bathymetry 
with two different rates of rise, starting at 200 m in 
the deep ocean and rising to 3 m on the shelf; 4) east 
coast bathymetry that represents a reach of ocean 
from the east coast of the United States to the mid-
Atlantic (minimum and maximum depths are 20 m 
and 5000 m). All simulations were conducted with a 
fully nonlinear finite element code based on the 
GWCE algorithm. Common conditions for the 
simulations were as follows: constant element size 
with a minimum wavelength to grid spacing ratio of 



200 (for the M2 wave); land boundary on one end of 
the domain (zero normal flux); open ocean boundary 
on the other end of the domain with a 1 meter M2 
forcing (principal semi-diurnal tidal constituent); no 
eddy viscosity; constant bottom friction 
parameter,τ , of 10-4/s; constant time step of 10 
seconds. For each, the model was spun up from a 
cold start over one M2 tidal cycle and the output was 
recorded over a second M2 cycle. 

Mass conservation was evaluated using a direct 
integration of the primitive continuity equation (1) 
over the period of record. In particular, the two 
terms of equation (1) represent accumulation and net 
flux. Correspondingly, mass imbalance is recorded 
as the average difference of the absolute value 
between the net flux and accumulation terms over 
the period of record. This error measure was denoted 
as avgE . For perfect mass balance, avgE  should equal 
zero. To facilitate comparison between domains 
(where conservation errors can vary by an order of 
magnitude), all errors were scaled so that their range 
of variation would be between 0 and 1, by using the 
following linear mapping: 
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Figure 2, which shows the Scaled Error versus 
tG∆  for each domain, illustrates the results of the 

validation. Of significance is the fact that the Scaled 
Error for all domains goes to zero as tG∆  gets large 
(we note that the absolute error, as measured by 

avgE , also approaches zero). This is in accord with 
the theoretical results of  equations 24 and 27 and 
the graph of Figure 1, which indicate that mass 
balance errors decrease as G increases. Also 
noteworthy is that the error plots in both Figures 1 
and 2 follow the same pattern, i.e., little change in 

error for extremely low or high values of tG∆  with a 
smooth transition in between, that occurs over two to 
three log cycles (we are still investigating the cause 
of small "hiccup" in the east coast plot). One 
difference is that in Figure 2 the transition occurs 
between 10-4 to 10-2, while in Figure 1, the transition 
occurs between 10-1 and 101. We attribute this to the 
difference in parameter values between the two 
graphs. 

Finally, it is important to note that mass balance 
is only part of the picture. In effect, as G is 
increased, the GWCE equation becomes more 
primitive; if increased too much, the spurious 
oscillations that plague the primitive finite element 
formulation begin to appear. Thus, it should not be 
inferred that the "best" solution is obtained by 
choosing arbitrarily large tG∆  values. Rather, the 
overall quality of the solution, in terms of mass 
balance and numerical noise control, is very 
sensitive to the value of the parameter G, which 
should be chosen with discretion. Referring to the 
validation simulations of Figure 2, we note that most 
of the error is removed with a tG∆  value of 10-2. 
With a t∆ =10 seconds, this gives a G value of 10-

3/second, or a τG  ratio of 10. Based on dispersion 
studies presented in Kolar et al. (1994), this ratio 
corresponds with the recommended upper bound on 
G in order to prevent spurious oscillations.  

5 CONCLUSIONS 

The GWCE formulation of the shallow water 
equations was developed in order to control spurious 
spatial oscillations that arise in numerical results 
generated by finite element discretizations of the 
primitive equations of motion. Even though success 
has been achieved in controlling the said oscillations 
via the GWCE formulation, it has also been 
observed that mass conservation errors arise in its 
application.  

The present paper addresses the above described 
issue by employing a Taylor-Fréchet expansion of 
the operators corresponding to the GWCE and the 
momentum equation. The result is linearized and 
localized, thus making feasible the use of Fourier 
analysis. Hence a dispersion relation is obtained for 
both the continuous and the discrete versions of the 
GWCE formulation. It is shown that this formulation 
does not conserve mass and that the mass 
conservation error decreases as the G parameter 
increases. This result was expected as in the limit 
when ∞→G , the GWCE formulation approaches 
the primitive formulation. Four numerical tests that 
confirm the theoretical findings are also included. 
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