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ABSTRACT: Wave continuity equation models were introduced in 1979 by Lynch and Gray as a means to 
suppress spurious oscillations that appeared in finite element models based on the primitive equations. Since 
then, the basic algorithm has been studied and tested extensively; with subsequent modifications and extensions, 
it has proven to be a computationally efficient, reliable algorithm for predicting the hydrodynamic behavior of 
coastal and oceanic waters. Modifications over the last 20 years can be broken into two broad, but inter-related 
classes: 1) changes to the numerical algorithm, e.g., implicit time-marching or higher order elements; 2) incor-
porating more of the underlying physics into the mathematical formulation, e.g., baroclinic forcing or wetting 
and drying of near-shore elements. This manuscript summarizes the algorithm’s evolution and highlights some 
its strengths as well as its shortcomings. It closes with some observations about the future of shallow water algo-
rithms based on the generalized wave continuity (GWC) equation. 
1  INTRODUCTION

The year 1999 marked 20 years since the publication 
of the seminal work of Lynch & Gray (1979) on the 
wave continuity equation, which represented the first 
non-oscillatory finite element scheme for the shallow 
water equations. Given all the developments over the 
intervening 20 years, it seems appropriate to review 
its origins, modifications, and applications from our 
current perspective. Moreover, a comprehensive 
understanding of the wave continuity algorithm will 
allow for more meaningful decisions about future 
directions in shallow water modeling. 

This paper follows the development of the algo-
rithm in more or less chronological order. First, we 
look at early finite element simulators in general, 
emphasizing their inadequacies. Such shortcomings 
prompted a long search by Gray, and later Gray & 
Lynch, for a better finite element algorithm. The 
“early years,” from 1977 to 1984, focused on 
analyzing, developing, and evaluating a non-oscilla-
tory, non-dissipative solution strategy. Next came the 
“middle years,” from 1985 to 1995, which consisted 
of further analysis and development, as well as more 
realistic applications (concomitant with advances in 
computer hardware and software). From 1995 on, we 
have witnessed an significant increase in the variety 
and number of applications, ranging from three-
dimensional larval transport studies to hurricane 
storm surges over intricate levied systems. Hand-in-
hand with the applications are model development 

issues, viz, applications point out model shortcom-
ings, which require more development and analysis. 
Finally, we close with an assessment of the state of 
wave continuity models and speculate on the future of 
shallow water modeling, taking into account the 
rapidly-changing nature of high performance 
computing. 

2  TERMINOLOGY

Shallow water models solve the depth-integrated 
forms of the conservation of mass and momentum 
equations under the assumption of a hydrostatic pres-
sure distribution. Using operator notation, where L
represents the primitive form of the continuity equa-
tion and MC the conservative form of the momentum 
equation, the wave continuity equation, as originally 
presented in Lynch & Gray (1979), is given as

 (1)

where  is the bottom friction factor. Equation (1) is 
called a wave continuity equation because in simpli-
fied form, it represents a damped, second order wave 
equation for surface elevation, , viz,

(2)
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The generalized form of the wave continuity equation 
is formed by replacing  in (1) with a numerical 
parameter, G, i.e., 

(3)

The G-parameter determines the balance in the wave 
continuity equation between the primitive and pure 
wave form. Its value has no physical meaning and is 
only used to control the numerical properties of the 
solution. The higher the magnitude of G, the more the 
generalized wave continuity equation approaches the 
primitive continuity equation. In the limit,  
as . From hereon, (3) is referred to as the 
generalized wave continuity (GWC) equation, unless 

 in which case it is referred to as the wave 
continuity equation. 

The discrete model is typically found by 
discretizing the GWC and momentum equation in 
space using a standard Galerkin finite element 
approximation with linear triangular elements. 
Implicit time discretization of the GWC equation uses 
a three-time-level approximation centered at k, while 
the momentum equation (in either conservative or 
nonconservative form) uses a lumped two-time-level 
approximation centered at k + 1/2. Nonlinear terms 
are evaluated explicitly, and exact quadrature rules 
are employed. The resulting equations are reported 
elsewhere (e.g., Luettich et al. 1991) so the lengthy 
results are not given here. A split step, sequential 
solution procedure is adopted wherein the GWC 
equation is solved for elevation, and the momentum 
equation is solved for the velocity field. 

3  PRE-WAVE CONTINUITY MODELS (< 1977)

Prior to 1970, numerical shallow water models fell 
almost exclusively in the domain of finite differences 
(FD), and of these, Leendertse’s (1967) staggered 
grid model became the standard. However, with the 
recognition that the finite element (FE) method can be 
viewed as a general procedure for solving partial 
differential equations, researchers began to explore 
finite element solutions to the shallow water equa-
tions. A primary reason these early finite element 
efforts were undertaken is that the developers recog-
nized the value of using unstructured grids to more 
accurately map irregular coastal geometries; finite 
element grids are also easier to refine. Grotkop (1973) 
is often credited with the first attempt to develop a 
workable finite element-based simulator. He used six 
node space-time finite elements to solve the primitive 
equations and applied the algorithm to the North Sea 
using 69 spatial nodes. No field plots are given, but he 
does claim to show good agreement with measured 
observations. However, later analyses showed this 

solution to be excessively dissipative (Gray 1982). 
Over the next few years, a number of other finite 

element models were reported in the literature. Taylor 
& Davis (1975) looked at both quadratic and cubic 
isoparametric elements to discretize the space 
domain, and they examined three different time 
marching algorithms: fourth order Adams-Moulton 
multi-step predictor-corrector, Crank-Nicholson, and 
finite elements in time using both linear Lagrange and 
Hermitian cubic interpolants. Wang & Connor (1975) 
used linear triangles for the space discretization and 
various time marching algorithms, including a split 
step finite difference scheme. Partridge & Brebbia 
(1976) discretized the space domain with quadratic 
triangles and looked at both Runge-Kutta and implicit 
Euler time-marching algorithms. Three characteris-
tics are common to all of these early efforts: 1) use of 
Galerkin’s method for the spatial discretization; 2) 
tremendous concern over the type of time marching 
algorithm; 3) appearance of short wave ( ) noise 
in the solution, particularly for the more “real-world” 
problems with 2D flow structure and non-constant 
bathymetry. It appears that the focus on time 
marching algorithms was primarily in response to the 
third problem, viz, a search for an algorithm that 
would propagate or dissipate the short wavelength 
components of the solution without affecting the 
longer wavelength components. None of these early 
modelers came across such an algorithm, so they 
resorted to suppressing the short waves using a 
variety of techniques: artificially high viscous or fric-
tion coefficients; overly dissipative time marching 
algorithms; smoothing (averaging) of the solution in 
a post-processing step. A secondary reason for the 
time stepping studies was the fact that computer 
memory at that time was on the order of kilobytes, so 
large sparse matrices could not be stored or inverted. 

In the mid-1970’s, Gray also recognized the 
inherent flexibility of the finite element method for 
simulating geophysical flows and joined the search 
for a “workable” finite element shallow water model. 
His first attempts are reported in a 1977 USGS manu-
script (Gray 1977). Of utmost concern was that the 
resulting algorithm be both accurate and cost-compet-
itive with FD codes. Gray’s initial work was strongly 
influenced by the staggered finite difference 
modelers. However, algorithmic “tricks,” which 
seemed almost trivial in a FD framework, did not 
transfer easily to the FE framework. Consider some of 
the hurdles. Limited computer memory often dictated 
the numerical algorithm. To minimize matrix storage 
and inversion, FD modelers resorted to alternating 
direction implicit methods, which are based on tridi-
agonal algorithms. Gray attempted to mimic this 
approach by examining three different split scheme 
algorithms: Leendertse’s two-step scheme, Abbott’s 
two-step scheme, and a four-step scheme developed 
by Gray. All were abandoned because of the difficulty 
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in imposing normal flux boundary conditions. In 
particular, with FD models on rectangular grids, the 
normal flux is always parallel to one of the axes, but 
with irregular FE meshes, the flux need not be 
parallel, and most often is not. Gray could not develop 
a split scheme algorithm, wherein U and V are solved 
for sequentially, without introducing some bias in the 
solution or without distorting the flow field near land 
boundaries. It is interesting to note that one of the 
options that he considered was to treat flux conditions 
as natural in the continuity equation instead of essen-
tial for the momentum equation, an approach that was 
also used by Partridge & Brebbia (1976), but it was 
not theoretically justified until 1996 (Kolar et al. 
1996). 

Guided by Taylor & Davis’ (1975) work with the 
Navier-Stokes equations, Gray did look at mixed 
interpolation (H linear and U,V quadratic) in an 
attempt to rid simulations of spurious modes. Results 
were much improved, but he still observed non-phys-
ical sea surface elevations. Next, Gray tried mixed 
interpolation (linear/quadratic isoparametric 
elements) in conjunction with a fully implicit treat-
ment of the governing equations, using a Picard-like 
iteration and relaxation to resolve the nonlinear terms. 
It was with this algorithm that he developed a physi-
cally-consistent treatment of the normal flow 
boundary conditions by rotating the momentum equa-
tion to normal-tangential coordinates on the 
boundary. The slow execution time (1-10 sec per time 
step on an IBM 360) and “large” memory require-
ments (150K for 119 nodes) led him to conclude that 
an implicit procedure could not be cost competitive 
with FD models. 

Consequently, Gray settled on an explicit model 
based on quadratic isoparametric elements with a 
leap-frog time marching algorithm. Mass matrices 
were lumped “naturally” through the use of nodal 
quadrature. One additional FE difficulty that Gray did 
address with this algorithm is a consistent treatment 
of flux boundary terms when there is a discontinuity 
in the shoreline angle at a node point. He concluded 
that the problem should be addressed by finding 
conditions on the rotation angles such that the integral 
of the normal flux over the boundary segment adja-
cent to the nodal point should be zero. Applications 
indicated the algorithm had promise, but oscillations 
were still observed in surface elevations.

4  THE EARLY YEARS (1977-1984)

Gray renewed his efforts at finding a non-oscillatory 
FE solution when, in 1977, he and Lynch published a 
study on 10 different time stepping algorithms for the 
shallow water equations. The study was restricted to 
one-dimensional linearized equations on a uniform 
grid, which were discretized in space using linear 
Galerkin FE. Fourier analysis, first used by Leen-

dertse to study FD algorithms, was used to study the 
amplitude and phase portraits of 10 different time 
marching algorithms: Crank-Nicholson, linear FE in 
time, leap-frog, split-step, second order Adams-Bash-
forth, second order Adams-Bashforth partially-
corrected, Lax-Wendroff, 3-level semi-implicit, 2 
level semi-implicit, and wave equation (implicit and 
explicit). Lynch & Gray recognized that in order for 
an algorithm to be accurate and oscillation free, then 
it should mimic the behavior of the analytical solu-
tion, viz, the magnitude of the propagation factor and 
the phase ratio should be close to 1.0 for all wave-
lengths. In other words, both short waves and long 
waves should propagate through the system with the 
amount of dissipation controlled by friction and 
viscous terms, not by the time marching procedure. 
On the contrary, if short waves do not propagate, then 
there must be some numerical damping of just the 
short waves in order to avoid oscillations. None of the 
first six algorithms mentioned above, all of which are 
based on the primitive equations, met these condi-
tions, i.e., they could not propagate or damp the short 
waves properly. 

The last four schemes mentioned above all share a 
common trait: they are derived by manipulating the 
governing equation through differentiation and 
substitutions so that the algorithm solves a mathemat-
ically equivalent problem, yet one that displays 
different numerical properties. In general, all four 
show better phase propagation characteristics than the 
first six, but the Lax-Wendroff is too heavily damped. 
The semi-implicit schemes have less damping, but the 
overall phase and amplitude behavior is not as good 
as the wave equation. In fact, the wave equation is the 
only one that has no artificial damping nor  phase 
lag for the shortest resolvable wave (for a range of 
Courant numbers). A common characteristic of the 
first three is the appearance of a second order space 
derivative in either the algorithm to solve for surface 
elevation or velocity. 

Thus the 1977 Gray & Lynch work represented a 
fundamental breakthrough in the search for non-oscil-
latory FE solutions. It is not clear from the article 
whether the Lax-Wendroff scheme or the three-level 
semi-implicit, which was developed by Kwizak & 
Robert (1971) for atmospheric modeling, served as 
the inspiration for the wave equation. Regardless, it 
became clear to them that the key to proper phase 
behavior in the context of Galerkin’s FE method was 
to manipulate the governing equations. Gray & Lynch 
also realized that the semi-implicit and wave 
approaches would lend themselves to a sequential 
solution procedure and explicit treatment of the 
nonlinear terms, two factors that were of great 
concern, given the computer resources of that day.

Gray & Lynch published a set of companion arti-
cles in 1979 that further explored the two most prom-
ising algorithms from their 1977 study: the three-level 
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semi-implicit model and the wave continuity model. 
In the first, Gray & Lynch (1979) compared a 2D 
primitive equation leapfrog model with the semi-
implicit one. Spatial derivatives in both models were 
approximated using Galerkin FE on linear triangles or 
quadratic quadrilaterals. Both time-stepping schemes 
allowed for a sequential solution procedure with the 
nonlinear terms evaluated explicitly. Nodal quadra-
ture was used to diagonalize the mass matrices. 
Fourier analysis shows that the primitive equation 
model neither damps nor propagates  waves, 
whereas the semi-implicit model damps, but does not 
propagate the short waves. Numerical tests confirmed 
analysis results, namely, numerical noise was a real 
problem with the primitive equation model for all but 
the simplest domains, whereas it was much less 
pronounced in the semi-implicit model. However, 
noise was still apparent in some of the two-dimen-
sional experiments. From this study, they concluded 
that a non-oscillatory Galerkin FE algorithm must 
damp and propagate  waves, yet maintain high 
accuracy for the predominant physical waves. 

Lynch & Gray (1979) then examined the response 
characteristics of the nonlinear 2D wave continuity 
equation, whose linear 1D form met the desired char-
acteristics of a non-oscillatory algorithm (Gray & 
Lynch 1977). As with the three-level semi-implicit 
model of Kwizak & Robert (1971), the key is to 
manipulate the governing equations so that a second 
derivative of surface elevation appears in the conti-
nuity equation (refer to the Introduction for the equa-
tions). Galerkin FE was used to discretize the space 
domain (linear triangles and quadratic quadrilaterals), 
and a three-time-level FD algorithm in the time 
domain. Nonlinear terms were evaluated explicitly, 
and the elevation/velocity fields were solved sequen-
tially. In two of the algorithms, nodal quadrature was 
used to diagonalize the mass matrices (lumped 
explicit and lumped semi-implicit); the other algo-
rithm was fully explicit with consistent matrices. In 
this original wave continuity formulation, the bottom 
friction appeared as a time-dependent coefficient in 
the mass matrix. Lynch & Gray made the matrices 
stationary by solving for intermediate variables, and 
then post-processing these to back out the elevation 
and velocity field. Numerical experiments confirmed 
analysis results in that it produced accurate, noise-
free solutions in all test cases. 

Following publication of the wave continuity algo-
rithm, a flurry of articles appeared that furthered the 
analyses of Lynch & Gray. They often included a 
comparison to the only other promising primitive FE 
algorithm at that time - mixed finite elements that 
attempted to mimic the successful staggered FD 
codes (e.g., Walters & Cheng 1979). All these signif-
icant works looked at the response characteristics in 
the frequency domain via Fourier transforms or 
modal (dispersion) analysis. 

Platzman’s pioneering work appeared in 1981 and 
was the first to introduce the concept of aliasing as 
applied to the shallow water models of that day. 
Instead of just looking at the steady-state modal 
behavior (  where  is the temporal 
frequency), Platzman analyzed time-dependent 
modes by looking at the full spectrum via a dispersion 
curve (wave number-frequency relation graph). He 
found that primitive equation models with equal-
order interpolants have a folded dispersion relation so 
that two wave numbers are associated with each 
frequency - one is the long physical wave and the 
other is the short non-physical wave (near ) that 
can be introduced through nonlinear interactions, 
among other sources. On the other hand, wave conti-
nuity models have a monotonic dispersion relation 
(one wave number per frequency) that mimics the 
analytical dispersion relation. Platzman also general-
ized the wave continuity approach under a general 
category he termed “derivative models,” which, in 
this case, can be derived by representing velocity by 
Stokes/Helmholtz potentials (  in 1D). 
Thus, the wave continuity “trick” belongs to the same 
class of methods in classical fluid mechanics where 
the continuity equation for incompressible flow 
becomes Laplace’s equation for velocity potential, 
the latter being much easier to work with numerically. 

Foreman (1983) expanded the dispersion analyses 
of the wave continuity equation to include a general 
family of two-step (three level) time marching algo-
rithms. Using dispersion and asymptotic analyses of 
consistent and lumped formulations, he concluded 
that accuracy, stability, and efficiency is optimized 
with the explicit, lumped wave continuity model. 

Others (Williams & Zienkiewicz 1981, Walters & 
Carey 1983, Walters 1983, Walters & Carey 1984) 
examined the dispersion relation of equal-order FE, 
mixed FE, staggered FD and FE, or the wave conti-
nuity algorithm. Significant conclusions include the 
following: All primitive models using equal-order 
interpolation are doomed to spurious oscillation 
modes; Staggered grids (FE or FD) can produce 
noise-free solutions by effectively shifting noise to 
wavelength , which is below the resolvable grid 
scale, yet these staggered methods are difficult to 
implement with unstructured meshes; Mixed FE with 
elevation interpolated with piecewise constants and 
velocity with linear polynomials works well in 1D, 
but can lead to the continuity equation being under-
constrained in 2D (in 2D, the number of nodal points 
does not maintain a constant relationship with the 
number of element centers, as it does in 1D); Mixed 
FE with elevation interpolated with linear polyno-
mials and velocity with quadratics produces noise 
free elevations, but Walters (1983) notes that noise 
still appears in the velocity field. Thus, Walters 
(1983) concludes that because wave continuity 
models propagate short waves, energy won’t accumu-
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late in this high frequency end of the spectrum so no 
subgrid dissipation mechanism is needed. For other 
FE algorithms, this is not the case so artificial or 
numerical damping must be introduced.

Gray’s 1982 work is the most complete FE inter-
model comparison at that time, and it further high-
lighted the last point made in the paragraph above. In 
that study, he examined seven algorithms in addition 
to the wave continuity and noted primary shortcom-
ings. His main finding was that only the wave conti-
nuity algorithm produces noise free solutions. 

Gray did check mass conservation in the 1982 
study for steady flow through a constricted channel; it 
was satisfactory so the issue was not pursued. Walters 
& Carey (1984) appear to be first to raise the question 
of mass imbalance with the wave continuity algo-
rithm, where, in the last statement of their conclu-
sions, they note that although the wave continuity 
produces a monotonic dispersion relation, “the 
method can lead to continuity problems since only the 
time rate of change of the continuity equation is 
required to vanish.” This observation would prove to 
be prophetic, as will be seen in the next decade. 

While it may appear to be a footnote with regard to 
the topic of this manuscript, finite element grids have 
actually had a tremendous impact on algorithm devel-
opment. During the 1977-1984 time period, auto-
matic meshing algorithms were limited, so many 
grids were still constructed by hand. Consequently, 
grids were coarse (a large grid may have contained 
100 nodes), bathymetry depths were interpolated 
graphically, and coast lines were not finely resolved. 
As a consequence, algorithms were not “pushed” hard 
in that they were simulating slowly evolving flow 
features on coarse regions of relatively open water. 

5  THE MIDDLE YEARS (1985 -1995)

Kinnmark’s (1986) monograph, in terms of scope and 
lasting contributions, represents one of the most 
complete studies of the wave continuity algorithm to 
date. Much of the work was devoted to refined 
stability and accuracy studies of explicit and implicit 
formulations on both uniform and nonuniform grids. 
These studies confirmed the superior wave propaga-
tion characteristics of the wave continuity formula-
tion. Two items have had particularly lasting 
significance. First, he introduced the generalized 
wave continuity equation (see (3)) where the weight 
associated with the primitive continuity equation, G, 
is distinct from the bottom friction factor, . The flex-
ibility to select G distinct from  has had far-reaching 
consequences in terms of minimizing errors and 
improving model performance. An obvious advan-
tage readily noted by Kinnmark is that it also makes 
the GWC mass matrix time invariant. Second, using 
operator notation, he examined the equivalence 
between the primitive equations and other formula-

tions, including the wave continuity equation. The 
operators allow for an elegant and very general 
method to describe a wide class of equations. He 
concluded that the generalized wave continuity equa-
tion is analytically equivalent to the primitive conti-
nuity equation provided , that is the initial 
conditions satisfy the primitive continuity equation. 
This condition arises because differentiating a differ-
ential equation can open up the solution space to 
include a wider class of solutions (e.g., compare the 
general solutions of  with ). If the 
condition  is not met, as indeed may be the 
situation in numerical applications, then he concluded 
the following: 1) if the conservative form of the 
momentum equation is used, then non-zero distur-
bances will be damped out whenever  (this is 
always true in applications); 2) if the non-conserva-
tive form of the momentum equation is used, then 
non-zero initial disturbances will be damped out 
whenever . The latter condition cannot 
be guaranteed a priori, so G should be chosen as large 
as possible without introducing spurious oscillations. 

Because the GWC algorithm propagates short 
waves, no artificial damping is needed. Because in 
most hydrodynamic simulations of estuarine and 
coastal waters, internal viscous stresses are much less 
in magnitude than bottom stresses, no viscous dissi-
pation terms were included in early GWC models. 
However, it became apparent in two applications in 
the late 1980’s that the observed flow field could not 
be simulated without including viscous stresses: 
Lynch’s effort to simulate gyres in the Mediterranean 
and Kolar and Gray’s effort to simulate circulation 
patterns in trout broodstock ponds. A problem arose 
when it was proposed to model viscous dissipation 
using a simple eddy viscosity term where losses are 
proportional to the Laplacian of the velocity field as 
this would introduce a second order derivative (even 
after application of Green’s Theorem) in the GWC 
equation, which could not be interpolated using the 
standard C0 Lagrange basis functions. Lynch (1988) 
solved the problem by introducing a momentum dissi-
pation term (proportional to the Laplacian of the 
velocity field) that he evaluated external to the GWC 
equation. Kolar and Gray (1990) solved the problem 
by using the continuity equation to replace the second 
order space derivative with a space and time deriva-
tive. Both produced acceptable results and both have 
been adopted in production codes. 

Gross mass balance errors (as measured by a direct 
integration of the primitive continuity equation) in 
transient simulations were discovered independently 
by Westerink and Kolar in 1992. Westerink found 
that in simulations of flow around inlets and barrier 
islands in the Gulf of St. Lawrence, mass was not 
being conserved. Kolar noticed the mass balance 
errors when simulating circulation patterns in the 
aforementioned trout broodstock ponds, a much 
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different application of the shallow water equations 
than tidal hydrodynamics in that the length scale is an 
order of magnitude less. The similarity between the 
two is that the nonlinear terms, particularly the advec-
tive terms, were significant in both applications. It 
was also found that mass balance errors serve as a 
surrogate variable for other problems, such as ampli-
tude and phasing errors. Extensive numerical experi-
ments and analysis indicated that the source of error 
was indeed the nonlinear terms. The key to mini-
mizing error, which was reported in Kolar et al. 
(1994) was to use a value of  so that the weight 
given to the primitive continuity equation (see (3)) is 
nontrivial, but not so large as to cause the funda-
mental character of the equation to be primitive. It is 
interesting to note that this confirms Walters and 
Carey’s (1984) hunch that the vanishing of  
alone, which is the case when , is not sufficient 
to ensure global conservation. Moreover, this finding 
supports Kinnmark’s analysis that G must be large in 
order to maintain an equivalency between the primi-
tive and GWC equation. 

Two other algorithmic changes helped improve 
mass conservation, which were reported in Kolar et 
al. (1994): 1) reformulate the advective terms in the 
GWC so that they are in non-conservative form 
(consistent with the momentum equation); 2) use 
mass conservative boundary conditions (as first 
reported in Lynch 1985) where normal fluxes are 
treated as natural conditions in the continuity equa-
tion. We note that the dispersion relation once again 
played a crucial role in GWC analysis, viz, it was used 
in Kolar et al. (1994) to identify the maximum value 
that could be specified for G before the dispersion 
relation became aliased (folded), thus ensuring noise-
free solutions with minimal mass balance error. 

Increased computer capacity allowed additional 
physics to be incorporated into the simulation. In 
particular, by splitting field calculations into external 
(vertically-averaged equations of motion) and 
internal (velocity profile over the vertical) modes, 
pseudo-3D simulations could be conducted. Two 
techniques for resolving the velocity profile emerged: 
velocity-based and stress-based. The former has been 
widely used in FD, spectral, and FE models, while the 
latter was developed by Luettich & Westerink (1991) 
and Luettich et al. (1994) and is used in the GWC-
based ADCIRC model. An advantage of the stress-
based algorithm is that fewer node points are required 
near the bottom boundary because shear stress varies 
approximately linearly near the boundary layer. In 
contrast velocity varies logarithmically for a no-slip 
bottom boundary condition (a slip condition at the 
bottom helps mitigate this resolution problem). 

Boundary conditions received additional attention 
during this period as well. Traditionally, water 
surface elevation is specified on open boundaries and 
treated as an essential (Dirichlet) condition for the 

continuity equation, while zero normal flux is speci-
fied on land boundaries and treated as a natural 
(Neumann) condition for the momentum equation. 
But, with coupled equations for the elevation and 
velocity field, it is not clear if this is the proper way to 
interpret boundary conditions. For example, a zero 
flux condition can be interpreted as a Dirichlet condi-
tion on the momentum equation (normal component) 
or a Neumann condition on the continuity equation or 
both. Drolet and Gray (1988) used characteristic 
theory to examine the number of conditions that must 
be applied, but did not specify how to impose them. 
Lynch (1985) indicated that global mass conservation 
can only be realized in primitive equation or wave 
equation models by using the continuity equation to 
compute normal fluxes on boundaries where surface 
elevation is specified, and then use the computed flux 
in velocity calculations. Westerink et al. (1994) 
examined the relation between boundary conditions 
and spurious modes, which indirectly impacts mass 
balance. 

Advents in mesh generating software automated 
the otherwise tedious process of grid development. 
The increased resolution of the finer, shallower 
coastal features increased the significance of the 
nonlinear terms in those regions, particularly the 
advective terms. In order to maintain stable simula-
tions with GWC-based models, a severe Courant 
restriction had to be imposed and parameter values 
had to be chosen carefully. 

6  THE PRESENT (1996-2000)

Advances in computer hardware have continued to 
drive many development efforts in shallow water 
models. GWC-based codes have incorporated more 
and more physics, including the following significant 
capabilities: three-dimensional baroclinic simula-
tions, sediment transport, wetting/drying of near-
shore areas, and barrier boundaries that include levees 
(with or without culverts) and floodwalls. The modi-
fications are driven by the increased use of shallow 
water models for effective coastal planning and storm 
warnings by federal, state, and local governments, as 
well as private consulting groups. 

Calculation of the vertical velocity was re-exam-
ined during this era. The problem is inherently ill-
posed in that the velocity is governed by a first order 
equation, yet two boundary conditions exist (free 
surface and bottom boundary). Most early algorithms 
used the derivative approach, in which a second 
derivative operator was applied to the governing 
equation to convert the equation to second order so 
that the problem was well-posed. Muccino (1997) 
showed that the method can lead to gross mass 
balance errors (analogous to GWC mass balance 
errors). To correct the problem, she proposed using 
the adjoint method to calculate the vertical velocity 
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(Muccino 1997); it has shown to produce mass 
conservative results. 

Recent algorithmic work has focused on one of 
three themes: time stepping, parallel computing, and 
mass balance. After the flurry of analysis and experi-
ments during the early and middle years, it seems that 
GWC-based models settled on a semi-implicit, split 
level time marching algorithm. In particular, the 
GWC equation is solved for elevation using a three-
time-level scheme centered at k, while the momentum 
equation is solved for the velocity field using a two-
level scheme centered at k + 1/2. Nonlinear terms are 
evaluated explicitly. Kolar et al. (1998) and Dresback 
& Kolar (1999) proposed a two-stage, predictor-
corrector algorithm to treat the nonlinear terms 
implicitly. Numerous experiments in 1D and 2D have 
demonstrated a significant increase in the maximum 
stable time step. 

Although many of the GWC-based models had 
been optimized for vector and scalar machines, little 
effort had been devoted to parallelizing the algorithm. 
Chippada et al. (1996) used domain decomposition 
techniques to parallelize the code for clusters of 
workstations or massively parallel computers. To 
minimize inter-processor communication, they used a 
Hilbert space-filling curve to divide the domain; 
results show a nearly linear scale-up. Parr (1999) 
further refined the parallel algorithm by introducing 
an alternative domain decomposition technique 
(metis algorithm) and by rewriting large sections of 
code. Benchmarking results on a wide variety of plat-
forms, ranging from massively parallel supercom-
puters to clusters of workstations, have approached 
theoretical limits (actually superlinear speed-up for 
some problems, depending on cache size). 

Current releases of mesh generating software 
allow users to create highly irregular meshes of 
complicated regions in a relatively automated fashion 
- a far cry from the hand generated meshes just 20 
years ago. Highly resolved bathymetric and coastline 
maps are also easily incorporated into the process. 
This, coupled with reliable algorithms and advanced 
post-processors (and even whole integrated modeling 
packages), has allowed users to dramatically increase 
the number and type of applications to which GWC-
based models are applied. Tidal circulation, the orig-
inal motivation for the GWC algorithm, is no longer 
the primary application; rather, applications now 
cover the gamut, ranging from larval transport to sedi-
ment transport to Naval fleet operations to coastal 
dredging operations. 

Simulations of ever larger domains with increased 
resolution has proven to be a real challenge for GWC-
based models, particularly from a mass balance point 
of view. Highly nonlinear flows, such as shallow, 
converging sections around barrier islands or flood 
waves propagating onto dry land, typically signifies 
regions where local mass imbalances may occur. To 

complement previous algorithmic changes to improve 
mass balance (see the previous section), researches 
took a renewed look at boundary conditions. In partic-
ular, Kolar et al. (1996) used generalized functions to 
study the impact of boundary conditions on mass 
conservation. They concluded that specified normal 
fluxes should be treated as Neumann conditions in the 
continuity equation in order to realize global mass 
conservation. Lynch and Holboke’s (1997) rigorous 
study reinforced this conclusion. They extended the 
analysis to 3D models and stipulated that Neumann 
conditions should also be enforced strongly on the 
velocity solution in order to realize higher accuracy 
and maintain a reversibility between Dirichlet and 
Neumann conditions. An interesting outcome of their 
analyses, for both time continuous and discrete prob-
lems, is that the GWC algorithm is mass conservative 
provided either the initial conditions satisfy the prim-
itive continuity equation or  so that perturba-
tions (due to initial conditions or roundoff error) are 
damped. This is identical to Kinnmark’s (1986) 
finding discussed earlier. Most recently, Westerink 
(1999) exploited this property by implementing a 
spatially-variable G, which allows the user to use a 
larger value of G (i.e., more primitive) in nonlinear 
regions where mass imbalance is a problem.

7  THE FUTURE?

Has the GWC algorithm outlived its usefulness? We 
think not. With split-step time marching, it is a very 
fast, efficient algorithm. It lends itself well to parallel 
and vector optimization. With the algorithmic 
changes over the years, it can accurately simulate a 
wide range of problems. It’s a tribute to the ground-
work laid by Gray & Lynch that the GWC algorithm, 
which was originally developed for simulating long 
water waves at a relatively coarse scale, is capable of 
handling the demands placed on it by today’s sophis-
ticated applications. Its current shortcomings stem 
from two problems: 1) instabilities and mass imbal-
ance for highly nonlinear flow; 2) supercritical flow 
(e.g., dam breaks). Thus, we anticipate the next-
generation of GWC models will have an option for 
using an alternative algorithm (which will have its 
own set of limitations), such as the finite volume 
method, on those portions of the domain not 
amenable to the GWC algorithm. Such an approach 
would lend itself well to parallel processing/domain 
decomposition techniques (the future of high perfor-
mance computing) wherein different algorithms 
could be applied to different subdomains. 
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